
Средства ввода-вывода

Схема потоков данных

Основы программирования

Схема потоков

Передача данных (ввод/вывод) осуществляется по

определенной схеме – схеме потоков.

Данные -- абстрактный линейный поток, передаваемого от

источника к приемнику (получателю).

При этом:

– источник не знает, кто является получателем данных,

и работает только с потоком;

– получатель также не имеет информации об

источнике, и работает только с потоком данных.

2

Схема потоков

Абстракция потока позволяет сделать универсальной:

– передачу данных независимо от типа получателя;

– прием данных, независимо от источника.

При этом и источник и получатель работают с абстракцией

потока.

Концепция потока не ограничена файловым вводом-

выводом -- библиотеки .NET предоставляют потоковый

доступ к сетям, областям памяти и прочим абстракциям.

3

Типы потоков

Потоки делятся на потоки:

– ввода (потоки, с которыми работает получатель) и

– вывода (потоки, с которыми работает источник).

Таким образом, ввод и вывод логически отделены друг от

друга и (по большому счету) никак не связаны.

По типу передаваемых данных потоки бывают:

– байтовыми

– текстовыми.

4

Типы потоков

Выделим четыре большие группы потоков:

– байтовые ввода;

– байтовые вывода;

– текстовые ввода (потоки чтения);

– текстовые вывода (потоки записи).

Каждая группа имеет базовый абстрактный класс, где

описана основная функциональность.

Наследники этих классов реализуют ввод или вывод для

конкретных хранилищ данных.

Окончив работу с потоком его нужно закрыть.

5

Байтовые потоки данных

Объединены байтовый поток ввода и байтовый поток

вывода.

Работа ведется не с потоком ввода и с потоком вывода

по отдельности, а с байтовым потоком ввода/вывода.

Поток поддерживает произвольный доступ к своему

содержимому. В связи с этим возникает необходимость

управления курсором в потоке.

Базовая функциональность описана в абстрактном
классе Stream.

6

Класс Stream

Базовый для всех остальных классов потоков. Из
пространства имен System.IO.

Является абстрактным классом, а это означает, что
создать экземпляр класса Stream нельзя.

В абстрактном классе определен набор членов, которые

обеспечивают поддержку:

– синхронного и

– асинхронного

взаимодействия с хранилищем (например, файлом или

областью памяти).

7

Класс Stream

• Потомки класса Stream представляют данные, как

низкоуровневые потоки байт, а непосредственная

работа с низкоуровневыми потоками может оказаться

довольно неоднозначной.

• Некоторые типы, унаследованные от Stream,

поддерживают поиск (seeking), что означает

возможность получения и изменения текущей позиции в

потоке.

8

Класс Stream. Свойства

CanRead - определяет, поддерживает ли текущий

поток чтение.

CanSeek - определяет, поддерживает ли текущий

поток поиск.

CanWrite - определяет, поддерживает ли текущий

поток запись.

Length - возвращает длину потока в байтах.

Position - определяет текущую позицию в потоке.

9

Класс Stream. Методы

Close() - закрывает текущий поток и освобождает все

ресурсы, связанные с текущим потоком.

Flush() - записывает данные в связанный с потоком

источник данных и очищает внутренний

буфер потока. Если буфер не реализуется, то

метод не делает ничего.

Read() - читает последовательность байт в массив и

перемещает курсор на количество считанных

байтов.

ReadByte()- читает одиночный байт из текущего

потока и перемещает текущую позицию

потока на один байт.

10

Класс Stream. Методы

Seek() - устанавливает позицию в текущем

потоке.

SetLength() - устанавливает длину текущего

потока.

Write() - записывает последовательность

байтов в поток и переместить курсор

на количество записанных байтов.

WriteByte() - записывает байт в поток и

перемещает курсор на один байт.

11

Класс FileStream

Является наследником класса Stream и реализует всю его

функциональность для взаимодействия с файлами.

Файл при этом интерпретируется как линейный поток

байтов, каждый байт которого может быть прочитан или

записан.

При этом реализуется возможность управления курсором

в файле.

Для задания режимов работы с файлами используются
стандартные перечисления FileMode, FileAccess и

FileShare.

12

Класс FileStream

Класс FileStream также позволяет создать новый файл

на диске, или открыть существующий.

Применяется для чтения и записи данных в любой файл.

Взаимодействовать с членами типа FileStream придется

нечасто, так как чаще используются оболочки потоков,

которые облегчают работу с текстовыми данными или
типами .NET.

13

Создание экземпляра FileStream

Для создания экземпляра требуется указать:

• файл, к которому должен получаться доступ.

• режим открытия файла - создать или открыть

существующий? Должно ли перезаписываться его

содержимое, или новые данные должны добавляться в

конец файла?

• вид доступа к файлу - нужен ли доступ на чтение или

запись либо то и другое вместе?

• общий доступ - должен ли доступ к файлу быть

эксклюзивным или должна быть возможность доступа со

стороны других потоков одновременно. Разрешено ли

им чтение, запись либо то и другое?

14

Перечисления FileStream

FileMode: Append,

Create,

CreateNew,

Open,

OpenOrCreate,

Truncate

FileAccess: Read,

ReadWrite,

Write

FileShare: Delete,

Inheritable,

None,

Read,

ReadWrite,

Write

15

Задание режима FileMode

Если запрашивается режим, не соответствующий

существующему состоянию файла, может быть

сгенерировано исключение.

Значения Append, Open и Truncate будут приводить к

генерации исключения, если файл не существует, а
значение CreateNew — наоборот, если он уже

существует.

Значения Create и OpenOrCreate подходят в обоих

сценариях, но Create приводит к удалению любого

существующего файла и замене его новым, изначально

пустым.

16

FileAccess и FileShare

Перечисления FileAccess и FileShare являются

битовыми флагами, поэтому их значения могут
комбинироваться с помощью битовой операции "ИЛИ", то

есть "|".

17

Конструкторы FileStream

Создает файл с доступом для чтения и записи и позволяет

другим потокам получать к нему доступ для чтения

FileStream fs = new FileStream(@"С:\C#

Projects\Project.doc", FileMode.Create);

+ другие потоки имеют доступ к файлу для записи

FileStream fs2 = new FileStream(@"С:\C#

Projects\Project2.doc", FileMode.Create,

FileAccess.Write);

+ другие потоки не имеют доступа к файлу до тех пор, пока
файл fs3 открыт

FileStream fs3 = new FileStream(@"С:\C#

Projects\Project3.doc", FileMode.Create,

FileAccess.Write, FileShare.None);

18

Конструкторы FileStream

Перегруженные версии конструкторов способны

подставлять стандартные значения
FileAccess.ReadWrite и FileShare.Read на

месте третьего и четвертого параметров в
зависимости от значения FileMode.

19

Закрытие потока

После окончания работы поток нужно закрыть:

fs.Close();

Закрытие потока приводит к освобождению всех

связанных с ним ресурсов и позволяет другим

приложениям запускать потоки для работы с тем же

файлом.

Кроме того, это действие приводит к очистке буфера.

20

Методы ReadByte()

Представляет собой самый простой способ для чтения

данных.

Он берет один байт из потока и приводит результат к типу
int со значением в диапазоне от 0 до 255. В случае

достижения конца потока он возвращает -1.

21

Метод Read()

Метод Read() - считывает заданное количество байт из

файла в массив.

Принимает три параметра и возвращает количество

успешно считанных байтов.

Принимаемые параметры:

– array - массив байтов, куда будут помещены

считываемые из файла данные;

– offset представляет смещение в байтах в массиве

array, в который считанные байты будут помещены;

– count - максимальное число байтов,

предназначенных для чтения.

22

Метод Read()

Метод Read() возвращает действительное количество

прочитанных байтов; если возвращается значение 0,

значит, был достигнут конец потока.

Пример чтения данных в массив байтов ByteArray:

int nBytesRead = fs.Read(ByteArray,

 0, nBytes);

0 -- смещения, которое позволяет указать, что массив

должен заполняться, начиная не с первого, а с какого-то

другого элемента;

nBytes -- сколько байт должно читаться в массив.

23

Метод WriteByte()

Позволяет записывать по одному байту в поток:

byte NextByte = 4;

fs.WriteByte(NextByte);

24

Метод Write()

Метод Write() записывает в файл данные из массива

байтов.

Принимает три параметра:

– array - массив байтов, откуда данные будут

записываться в файла;

– offset - смещение в байтах в массиве array, откуда

начинается запись байтов в поток;

– count - максимальное число байтов,

предназначенных для записи.

25

Пример

FileStream fs = new FileStream(”test.dat”,

FileMode.OpenOrCreate, FileAccess.ReadWrite,

FileShare.None);

byte[] x = new byte[10];

for (int i = 0; i < 10, i++) {

 x[i] = i; }

fs.Write(x);

//в поток по-байтно записывается массив байт

fs.Write(x,0,5);

//пишем 5 элементов массива, начиная с 0-го

26

Пример

for (byte i = 0; i < 256; i++) {

fs.WriteByte(i); }

//записываются числа от 0 до 255 в виде байтов

fs.Position = 0;

//перемещаем курсор в начало файлового потока

byte[] y = new byte[15];

fs.Read(y,0,15);

//из потока считывается 15 элементов в массив

byte z = fs.ReadByte();

//из потока считывается 1 байт

fs.Close();

27

Метод Seek()

Метод Seek() используется для установки курсора в

потоке на байт с определенным номером (еще один
способ управления свойством Position).

Этот метод имеет два параметра – количество байт,

которые нужно отступить и точку отсчета, от которой нужно

отступить указанное число байт.

Точкой отсчета являются константы из перечисления
SeekOrigin:

• Begin – от начала файлового потока:

• Current – от текущей позиции курсора в потоке;

• End – от конца потока.

 28

Исключения

При работе с файлами возможен выброс следующих

исключений:

– FileNotFoundException – попытка открыть

несуществующий файл;

– DirectoryNotFoundException – обращение к

несуществующей директории;

– ArgumetException – неверно задан режим открытия

потока;

– IOException – ошибка ввода/вывода.

Эти исключения нужно отлавливать.

29

Рекомендуемые источники

1.C# и .NET | FileStream. Чтение и запись файла (metanit.com)

https://metanit.com/sharp/tutorial/5.4.php

30

https://metanit.com/sharp/tutorial/5.4.php

