
Иерархия классов

Стандартные интерфейсы

Основы программирования

Стандартные интерфейсы

Реализация стандартных интерфейсов позволяет

пользовательским классам участвовать в стандартных

механизмах и схемах наравне со стандартными

классами.

Мы рассмотрим:

• IComparable;

• IComparer;

• IClonable.

2

Сортировка массива

Пример 1
int [] mas = new int [4] {3, 4, 9, 6};

Array.Sort(mas);

Пример 2
class Books

{int price; string author, name;}

Books [] mas = new Books [4];

/* 200 Павловская Программирование C#

 400 Шилд Справочник C#

 500 Троэлсен C# */

Array.Sort(mas);

3

Интерфейс IComparable

Реализуется когда объекты класса нужно уметь

сравнивать между собой на «больше» и «меньше».

Используется при сортировке массива.

• Пространство имен:
System.Collections

• Содержит только один метод:
int CompareTo(object o)

Метод Sort по умолчанию работает только для наборов

примитивных типов, как int или string. Для сортировки наборов

сложных объектов применяется интерфейс IComparable.

4

Интерфейс IСomparable.
Возвращаемое значение

• «1» - если объект, у которого вызывается метод,

 «больше» чем объект, переданный в качестве

 параметра;

• «-1» - если объект, у которого вызывается метод,

 «меньше» чем объект, переданный в качестве

 параметра;

• «0» - в том случае, если объекты «равны».

Отношения «больше», «меньше» и «равны» определяют,

исходя из семантики (смысла) задачи.

 5

Пример. Класс MyClass

class MyClass : IComparable

{

 int count;

 string description;

public MyClass(int c, string d)

 {

 count = c;

 description = d;

 }

6

Пример. Реализация CompareTo

public int CompareTo(object o) {

MyClass mo = o as MyClass;

if (mo != null)

 if (this.count > mo.count) return 1;

 else

 if (this.count < mo.count) return -1;

 else

 return 0;

else

throw new Exception("Не сравнить");
}

}

7

Пример

…

MyClass m1 = new MyClass(1, "1 объект");

MyClass m2 = new MyClass(2, "2 объект");

if (m1.CompareTo(m2) > 0)

 Console.WriteLine("m1 > m2");

 else

 if (m1.CompareTo(m2) < 0)

 Console.WriteLine("m1 < m2");

 else Console.WriteLine("m1 = m2");

…

8

Пример. Пояснения

• В методе, унаследованном от интерфейса
IComparable, определен критерий сравнения

объектов на «больше» и «меньше».

• При сравнении объектов большим будет считаться тот
объект, у которого значение целого поля count

больше.

9

IComparable и сортировка массива

Реализация интерфейса IComparable позволяет

использовать объекты производного класса в

стандартных технологиях сравнения объектов.

MyClass[] mas = new MyClass[3];

mas[0] = new MyClass(5, "5");

mas[1] = new MyClass(1, "1");

mas[2] = new MyClass(2, "2");

Array.Sort(mas);

10

 Как изменится код?

Как изменится следующий фрагмент кода чтобы

сортировка производилась по:

• убыванию;

• букве;

• строке?

11

Пример 2. Класс Person

class Person : IComparable {

 public string Name { get; set; }

 public int Age { get; set; }

 public int CompareTo(object o) {

 Person p = o as Person;

 if (p != null)

 return this.Name.CompareTo(p.Name);

 else

 throw new Exception("Сравнение невозможно");

}

}

Критерий сравнения – свойство Name объекта Person

12

Пример 2. Сортировка по строкам

Person p1 = new Person {Name="Глеб", Age=34};

Person p2 = new Person {Name="Игорь", Age =20};

Person p3 = new Person {Name="Ася", Age=17 };

Person[] people = new Person[] { p1, p2, p3 };

Array.Sort(people);

foreach(Person p in people) {

 Console.WriteLine("{0} - {1}", p.Name, p.Age);

}

13

Обобщенная версия IComparable

IComparable имеет обобщенную версию.

Можно сократить и упростить его применение в классе
Person, используя необобщенную форму.

Посмотреть

https://metanit.com/sharp/tutorial/4.4.php

https://metanit.com/sharp/tutorial/3.12.php

14

https://metanit.com/sharp/tutorial/4.4.php
https://metanit.com/sharp/tutorial/3.12.php

Необобщенная форма IComparable

15

class Person : IComparable {

public string Name { get; set; }

public int Age { get; set; }

public int CompareTo(object o) {

Person p = o as Person;

if (p != null)

return

this.Name.CompareTo(p.Name);

else

throw new Exception("Ошибка");

}

}

class Person : IComparable<Person>

 {

public string Name { get; set; }

public int Age { get; set; }

public int CompareTo(Person p) {

return

this.Name.CompareTo(p.Name);

}

}

Интерфейс IComparer

Предназначен для задания критерия сортировки

Позволяет описать различные правила сравнения

объектов.

• Пространство имен:
System.Collections

• Содержит только один метод:
int Compare (object o1, object j2)

16

Интерфейс IСomparar.

Возвращаемое значение

• «1» - если первый параметр «больше» второго;

• «-1» - в том случае, если первый параметр «меньше»

 второго;

• «0» - в том случае, если объекты «равны».

Как и в методе CompareTo, отношения «больше», «меньше» и

«равны» определяются, исходя из семантики задачи.

17

Порядок применения критерия
сортировки

1. Описывается вспомогательный класс, реализующий
интерфейс IСomparer объект которого и будет

являться критерием сравнения объектов

пользовательского класса.

Таких вспомогательных классов может быть

несколько для реализации различных критериев

сортировки.

2. Объект критерия передается в качестве параметра в

стандартный метод сортировки массива

пользовательских объектов.

Для различных видов сортировки необходим свой

объект критерия.

18

Пример. Класс MyClass

class MyClass {

int count; string description;

public MyClass(int c, string d) {

count = c; description = d; }

public int Count {

get { return count; }

set { count = value; } }

public string Description {

get { return description; }

set { description = value; }

}}

19

Пример. Критерий 1 “SortByCountUp”

class SortByCountUp : IComparer {

public int Compare(object o1, object o2) {

MyClass mc1 = o1 as MyClass;

MyClass mc2 = o2 as MyClass;

…

if (mc1.Count > mc2.Count) return 1;

else

if (mc1.Count < mc2.Count) return -1;

else return 0;

}

}

20

Пример. Критерий 2 “SortByCountDown”

class SortByCountDown : IComparer {

public int Compare(object o1, object o2) {

MyClass mc1 = o1 as MyClass;

MyClass mc2 = o2 as MyClass;

…

if (mc1.Count < mc2.Count) return 1;

 else

 if (mc1.Count > mc2.Count) return -1;

 else return 0;

}

}

21

Пример. Критерий 3 “SortByDescriptionUp”

class SortByDescriptionUp : IComparer {

public int Compare(object o1, object o2) {

MyClass mc1 = o1 as MyClass;

MyClass mc2 = o2 as MyClass;

…

return mc1.Description.CompareTo(mc2.Description);

}

}

22

Пример. Критерий
SortByDescriptionDown

class SortByDescriptionDown : IComparer {

public int Compare(object o1, object o2) {

MyClass mc1 = o1 as MyClass;

MyClass mc2 = o2 as MyClass;

…

return mc2.Description.CompareTo(mc1.Description);

}

}

23

Пример. Проверка

MyClass[] mas = new MyClass[3];

mas[0] = new MyClass(5, "5");

mas[1] = new MyClass(1, "1");

mas[2] = new MyClass(7, "7");

Array.Sort(mas, new SortByCountUp());

Array.Sort(mas, new SortByCountDown());

Array.Sort(mas, new SortByDescriptionUp());

Array.Sort(mas, new SortByDescriptionDown());

24

Пример 2. Необобщенная форма

class PeopleComparer : IComparer<Person> {

public int Compare(Person p1, Person p2)

{

if (p1.Name.Length > p2.Name.Length)

 return 1;

else if (p1.Name.Length < p2.Name.Length)

 return -1;

else

 return 0;

}

}

25

Клонирование

Клонирование – это создание копии объекта.

Два вида клонирования объектов:

• поверхностное;

• глубокое.

26

Поверхностное клонирование

Создается точная копия объекта:

• все значащие поля копируются в клон,

• поля, являющиеся ссылками на другие объекты, также в

точности копируются в клон – то есть остаются

направленными на старые объекты, новых объектов для

полей-ссылок поверхностное клонирование не создает.

Полезно, если у клонируемого объекта нет полей,

ссылающихся на другие объекты.

Поверхностное клонирование реализовано в методе
MemberwiseClone() в классе Object.

27

Глубокое клонирование

Реализуется если необходимо создание полного

независимого глубокого клона объекта.

Алгоритм глубокого клонирования не специфицирован и

описывается разработчиком.

При этом класс должен реализовывать интерфейс
ICloneable, в котором описан единственный метод:

object Clone();

28

Глубокое клонирование

В методе Clone()и реализуется алгоритм глубокого

клонирования.

Реализация классом интерфейса ICloneable говорит о

том, что объекты класса умеют создавать свои глубокие

клоны.

В заголовке метода Clone() в качестве возвращаемого

результата указан тип object. Это означает, что при

вызове операции получения глубокого клона необходимо
явное преобразование полученного клона к искомому типу.

29

Рекомендации по клонированию …

Их следует основывать на иерархичном построении

поверхностных (легких клонов):

• сложный объект сначала поверхностно клонируется на

самом верхнем уровне, а затем

• внутренние ссылки направляются на поверхностные

клоны внутренних ссылок, хранящихся в клонируемом

объекте, и т.д.

30

Пример

class MyClass : ICloneable {

int[] mas;

int length;

public MyClass(int l) {

mas = new int[l];

length = mas.Length; }

public int this[int i] {

get { return mas[i]; }

set { mas[i] = value; } }

public int Length {

get { return length; } }

31

Пример

public object LightClone() {

return this.MemberwiseClone(); }

public object Clone() {

MyClass m = (MyClass)this.MemberwiseClone();

m.mas=(int[])mas.Clone();//вызов вернет глубокий клон

внутреннего объекта

return m; }

32

Пример

//вариант метода клонирования без

//использования поверхностных клонов

// public object Clone() {

// MyClass m = new MyClass(length);

// for (int i = 0; i < length; i++) {

// m[i] = mas[i];

// }

// return m;

// }

}

33

Пример

MyClass o = new MyClass(3);

for (int i = 0; i < o.Length; i++) {

 o[i] = i;

}

Console.WriteLine("Клонируемый объект:");

for (int i = 0; i < o.Length; i++) {

 Сonsole.WriteLine(o[i]);

}

34

Пример

MyClass o1= (MyClass)o.LightClone();//поверхн.

o1[0] = 10;

Console.WriteLine("Клонируемый объект:");

for (int i = 0; i < o.Length; i++) {

 Console.WriteLine(o[i]);

}

Console.WriteLine("Клонированный объект:");

for (int i = 0; i < o1.Length; i++){

 Console.WriteLine(o1[i]);

}

35

Пример. Вывод на экран

Клонируемый объект:

0

1

2

Клонируемый объект:

10

1

2

Клонированный объект:

10

1

2

36

Пример. Пояснение

Как видно из примера, клонируемый объект o и его

поверхностный клон o1 ссылаются на один и тот же

массив целых чисел.

Поэтому изменение состояния копии o1 влечет за собой

автоматическое изменение состояния исходного объекта
o.

37

Пример. Продолжение

MyClass o = new MyClass(3);

for (int i = 0; i < o.Length; i++) {

 o[i] = i;

}

Console.WriteLine("Клонируемый объект:");

for (int i = 0; i < o.Length; i++) {

 Console.WriteLine(o[i]);

}

38

Пример. Продолжение

MyClass o2= (MyClass)o.Clone(); //создание

 глубокого клона

o2[0] = 10;

Console.WriteLine("Клонируемый объект:");

for (int i = 0; i < o.Length; i++){

Console.WriteLine(o[i]);}

Console.WriteLine("Клонированный объект:");

for (int i = 0; i < o2.Length; i++){

Console.WriteLine(o2[i]);}

39

Пример. Вывод на экран

Клонируемый объект:

0

1

2

Клонируемый объект:

0

1

2

Клонированный объект:

10

1
2

40

