
Иерархия классов

Наследование

Основы программирования

Для чего?

При решении сложных задач часто возникает

необходимость в описании большого количества классов,

многие из которых имеют некоторую общую

функциональность.

Такой набор классов нуждается в упорядочении и

структурировании.

В этом помогает реализация принципа наследования.

2

Пример

Объекты: человек и студент.

«Человек»: имя, рост, вес, другие характеристики.

«Студент»: имя, рост, вес, другие характеристики.

(то есть то же что и у объекта «Человек») +

название ВУЗа, специальность, курс, средний

балл…

Объект «Студент» это наследник объекта «Человек».

3

Наследование это …

• механизм создания нового класса на основе уже

существующего старого;

• старый класс называется «родительским», «предком»

(«super class»);

• новый класс называется «дочерним», «наследником»

(«sub class»);

• наследование нужно для повторного использования

кода, которое облегчает следование принципу DRY

(Don’t Repeat Yourself — не повторяйся);

• дочерний класс содержит методы и переменные

родительского.

4

Наследование. Синтаксис

Класс может иметь сколько угодно потомков и только

одного предка.

Синтаксис:

[атрибуты] [спецификаторы] class имя_класса :

 [предки]

{

 // тело класса

}

5

Пример. Класс «Студент»

class Student

{

string name; //фамилия

string address; //адрес

DateTime birthday; //дата рождения

int id; //номер зачетной книжки

int group; //номер группы

}

6

Пример. Класс «Преподаватель»

class Teacher

{

string name; //фамилия

string address; //адрес

DateTime birthday; //дата рождения

string department; //кафедра

string degree; //ученая степень

}

7

Пример. Базовый класс «Человек»

class Pearson

{

string name; //фамилия

string address; //адрес

DateTime birthday; //дата рождения

}

8

Пример. Производные классы

class Student : Person

{

int id; //номер зачетной книжки

int group; //номер группы

}

сlass Teacher : Person

{

string department; //кафедра

string degree; //ученая степень

}

9

Достоинства наследования

• позволяет исключить повторяющиеся блоки кода;

• упростить модификацию классов;

• упростить расширение иерархии классов.

10

Пример. Изменения

class Pearson

{

…

int INN; //номер ИНН

}

сlass Engineer: Person

{

string department; //кафедра

string qualification; //квалификация

}

11

Особенности наследования

• не поддерживается множественное наследование,

класс может наследоваться только от одного класса

• при создании производного класса надо учитывать тип

доступа к базовому классу - тип доступа к

производному классу должен быть таким же, как и у

базового класса, или более строгим. То есть, если
базовый класс у нас имеет тип доступа internal, то

производный класс может иметь тип
доступа internal или private, но не public

• класс может быть объявлен с модификатором sealed,

Это означает, что от этого класса нельзя наследовать

и создавать производные классы.

12

Одиночное наследования

В языке C# для классов реализовано одиночное

наследование, то есть

• класс может иметь только одного предка,

• и неограниченное количество потомков.

Количество потомков определяется необходимостью и

здравым смыслом.

Родительский класс указывается в заголовке при

описании класса, если предок явно не указан, то класс
считается наследующим от базового класса Object.

13

