
Делегаты, события и лямбда

выражения

Делегаты

Основы программирования

Определение

Делегат -- объект, который может ссылаться на метод.

Когда создается делегат, то в итоге получается объект,

содержащий ссылку на метод.

По этой ссылке можно вызывать метод.

Иными словами, делегат позволяет вызывать метод, на

который он ссылается.

Делегат - это специальный класс, объект которого

предназначен для хранения ссылок на методы.

Синтаксис делегата описывает сигнатуру методов,

которые могут быть вызваны с его помощью.

2

Определение

Это объект, указывающий на другой метод (или,

возможно, список методов) приложения, который может

быть вызван позднее.

В частности, объект делегата поддерживает три важных

фрагмента информации:

• адрес метода, которой вызывается;

• аргументы (если есть) этого метода;

• возвращаемое значение (если есть) этого метода.

3

Синтаксис

<атрибуты> <спецификаторы> delegate <тип>

<имя>(<список параметров>);

где,

спецификаторы могут быть следующими - new, public,

protected, internal, private;

тип – это тип возвращаемого значения из методов,

вызываемых с помощью делегата;

список параметров – набор параметров этих методов с

указанием их типов.

 4

Замечания 1

Делегат может хранить ссылки на несколько методов, их

списки параметров должны совпадать по порядку и типу

параметров, методы вызываются поочерѐдно.

Наследовать от делегата запрещено, объявлять делегат

можно как в классе, так и непосредственно в пространстве

имен (вне класса).

Для использования делегата нужно создать его экземпляр

и зарегистрировать в нѐм методы. При вызове экземпляра

делегата вызываются все методы, ссылки на которые он

хранит.

5

Замечания 2

Делегаты позволяют определить исполняемый метод во

время выполнения программы, а не на этапе компиляции,

а это, в свою очередь, позволяет создавать методы,

вызывающие другие методы.

Делегат предназначен для реализации механизма

событий.

6

Пример

Сначала описываем делегат:

delegate void Message();

 // 1. Описание/определение делегата

Для использования делегата объявляется переменная этого

делегата:

Message mes; // 2. Объявление делегата/

 создание переменной делегата

mes = GoodMorning;

 // 3. Инициализация делегата/

 присвоение переменной адреса метода

Через делегат вызываем метод, на который ссылается данный

делегат:

mes(); // 4. Вызываем метод

7

Пример

delegate int Del(int a, int b);

 // Определение делегата

class Class

{

 public int Sum(int a, int b)

 {

 return a+b;

 }

 public int Sub(int a, int b)

 {

 return a-b;

 }

}

8

Пример

class Program {

 static void Main()

 {

 int a=5;

 int b=2;

 Del d; // Объявление делегата

 Class c=new Class();

 d = new Del(c.Sum); //Инициализация

 int e =d(a,b); // Выполнение делегата

 d=new Del(c.Sub);

 int f=d(a,b);

 }

}

9

Вызов делегата

Вызов делегата - тот же вызов метода.

Если в делегате хранятся ссылки на несколько методов, то

они выполняются последовательно, и изменения,

вносимые в параметры одним методом, влияют на

последующие.

Формирование списка методов, вызываемых с помощью

делегата, производится с помощью операции сложения.

Удаление из списка – с помощью операции вычитания

Либо методов Combine() и Remove() у объекта делегат.

10

Пример

class Class {

 public static int Sum(int a, int b) {

 Console.WriteLine(“Сумма равна {0}”,a+b);

 return a+b; }

 public static int Sub(int a, int b) {

 Console.WriteLine(“Разность равна {0}”,a-b);

 return a-b; }

}

delegate int Del(int a, int b);

11

Пример

class Program

{

 static void Main() {

 int a = 10; int b = 6;

 Del d = new Del(Class.Sum);

 d += new Del(Class.Sub);

 int c = d(a,b);

 Console.WriteLine(“Результат {0}”,c);

 d -= new Del(Class.Sub);

 int e = d(a,b);

 Console.WriteLine(“Результат {0}”,e);

 }

}

12

Передаваемые методы

В делегат можно передавать методы:

• обычные (по имени объекта);

• статические (по имени класса).

Сигнатура методов должна полностью соответствовать

делегату.

13

Передаваемые параметры

Параметры могут передаваться не по значению, а по

ссылке.

В этом случае изменение параметра в одном методе из

списка методов влияет на параметр, передаваемый в

последующие методы.

Поскольку методы в списке вызова делегата выполняются

последовательно, набор параметров в методы передаѐтся

также последовательно.

14

Исключения при вызове делегатов

Если вызвать на исполнение делегат, в списке которого

нет методов, то будет сгенерировано исключение
NullReferenceException.

15

Исключения при вызове делегатов

Если в методе из списка делегата возникло исключение, то

1. исключение, обработанное в том же методе, никак не

влияет на выполнение последующих методов;

2. если исключение в методе не обработано, то

последующие методы не выполняются, а производится

поиск обработчика исключения в методе, вызывающем

делегат.

16

Пример

class Program {

 static void Main() {

 Del d=new Del(Class1.Method1);

 d+=new Del(Class1.Method2);

 d+=new Del(Class1.Method3);

 d();

 }

}

17

Пример

Выполнение данного примера приведет к

выбросу исключения в одном из методов в

списке вызова делегата. Необходима

обработка исключения.

18

Пример

class Program {

static void Main() {

Del d=new Del(Class1.Method1);

d+=new Del(Class1.Method2);

d+=new Del(Class1.Method3);

try {

d(); }

catch (Exception e) {

Console.WriteLine(e.Message); }

 }

}

19

Пример

// или так:

foreach (Del d1 in d.GetInvokationList()) {

try {

d1(); }

catch (Exception e) {

Console.WriteLine(e.Message);} }

}

}

20

Делегаты в параметрах методов

Делегат – это ссылка на методы, и объект

специального класса, его можно передавать в

методы.

Таким образом, с использованием делегата

создаются универсальные методы, которые

вызывают другие методы, причѐм заранее

неизвестно, какие, они передаются в виде делегата.

21

Пример

delegate double Function(double x);

class Class1

{

 public static void CountFunction(Function f,

 double a, double b, double dx)

 {

 for (double x=a; x<=b; x+=dx)

 {

 Console.WriteLine(“x={0,5:0.##}

 y={1,5:0.##}”,x,f(x));

 }

}

22

Пример

public static double Sinus(double x) {

return Math.Sin(x);

}

public static double Cosinus(double x) {

return Math.Cos(x);

}

public static double Const(double x) {

return 3;

}

}

23

Пример

class Program {

 static void Main() {

 Console.WriteLine(“Функция синуса”);

 Function d=new Function(Class1.Sinus);

 Class1.CountFunction(d,-2,2,0.1);

 Console.WriteLine(“Функция косинуса”);

 d=new Function(Class1.Cosinus);

 Class1.CountFunction(d,-2,2,0.05);

 Console.WriteLine(“Функция y=3”);

 Class1.CountFunction(new

 Function(class1.Const),0,5,1);

 }

}

24

Пример. Комментарий

На данной технологии основан механизм обратных

вызовов: описывается метод, содержащий бизнес-

логику, этот метод через делегат передаѐтся в

универсальный метод, а он вызывает делегат, то есть

передаѐт вызов методу с бизнес-логикой (обратный

вызов).

25

Операции с делегатами

Делегаты можно сравнивать на равенство и неравенство.

Делегаты считаются равными, если они содержат ссылки

на одни и те же методы в одном и том же порядке, либо не

содержат методы.

Делегаты, имеющие один тип возвращаемого значения и

одинаковые списки параметров, но различающиеся по

имени класса, также можно сравнивать, на равенство и

неравенство, хотя такие делегаты считаются

принадлежащими разным типам.

26

Операции с делегатами

Делегат относится к неизменяемым типам данных, то

есть при его изменении создаѐтся новый экземпляр, а

старый теряется.

Делегаты одного типа можно складывать и вычитать.

27

Пример

…

Del d1=new Del(Class1.Sum);

Del d2=new Del(Class1.Sub);

Del d3=new Del(Class1.Sub);

d3=d1+d2;

d3+=d1;

d3+=d2;

d3-=d1;

…

28

