
Средства ввода-вывода

Сериализация

Основы программирования

Бинарная сериализация

Для бинарной сериализации в .NET можно применять

класс BinaryFormatter.

Отметим, что хотя в принципе его можно применять, но не

рекомендуется, поскольку он не считается безопасным.

Данная часть приведена только для справки.

2

Сериализация и десериализация

При работе с байтовыми потоками состояние объекта

пишется в поток по-элементно, с последующим

поэлементным же считыванием.

В некоторых ситуациях удобно записывать в поток объект

целиком.

Процесс преобразования объекта в линейный поток

байтов называется байтовой сериализацией. Обратный

процесс считывания из линейного потока и формирования

объекта называется десериализацией.

Часто сохранение данных с использованием сериализации

выливается в код меньшего объема.

3

Сериализация

Объект может содержать ссылки на другие объекты,

которые в свою очередь содержат ссылки на другие

объекты (и т.д.).

Для описания этих сложных связей необходимо
построение так называемого графа объектов (или

дерева объектов).

При сериализации сохраняется сам граф объектов и

состояние всех объектов, входящих в граф.

При десериализации по считанному графу объектов

восстанавливаются их связи и состояния.

Построение графа объектов и настройка сериализации

производится автоматически.

4

…

Для того, чтобы класс был сериализуем, нужно указать для
него атрибут [Serializable].

Классы, помеченные этим атрибутом, могут быть

сериализованы, то есть представлены в виде потока

байтов.

Сериализация применяется к свойствам и полям класса.

Если мы не хотим, чтобы какое-то поле класса

сериализовалось, то мы его помечаем
атрибутом [NonSerialized].

5

Пример

6

Пример

При наследовании подобного класса, следует учитывать,
что атрибут Serializable автоматически не

наследуется.

И если необходимо, чтобы производный класс также мог

бы быть сериализован, то опять же мы применяем к нему

атрибут:

7

Двоичные потоки данных

Процессом сериализации занимается специальный
внешний объект класса Formatter.

Существует два типа сериализации:

• байтовая,

• XML формат.

Рассмотрим только байтовую сериализацию.

Двоичный форматер описан в пространстве имен
System.Runtime.Serialization.Formatters.Binary

и принадлежит классу BinaryFormatter.

8

Класс BinaryFormatter

Тип BinaryFormatter сериализует состояние объекта в

поток, используя компактный двоичный формат.

Этот тип определен в пространстве имен
System.Runtime.Serialization.Formatters.Binary.

Таким образом, чтобы получить доступ к этому типу,
необходимо указать следующую директиву using:

// Получить доступ к BinaryFormatter:

using System.Runtime.Serialization.

Formatters.Binary;

9

Класс BinaryFormatter. Основные методы

Serialize() – сериализация объекта в байтовый поток.

Deserialize() – десериализация объекта из байтового

потока.

10

Пример

[Serializable]

class Class1

{ int n; … }

[Serializable]

class Class2

{ Class1 c1 = new Class1(); … }

…

Class2 c2 = new Class2();

11

Пример

FileStream fs = File.Create(”my.bin”);

BinaryFormatter bf = new BinaryFormatter();

bf.Serialize(fs, c2);

fs.Close();

fs = File.OpenRead(”my.bin”);

Class2 c3 = (Class2)bf.Deserialize(fs);

fs.Close();

…

12

Пример. Комментарий

Форматтер десериализует объект из потока и возвращает
на него ссылку типа Object, поэтому необходимо явное

преобразование к реальному типу объекта.

Если какие-то поля класса не нужно сохранять при

сериализации, то их помечают атрибутом
NonSerialized.

При десериализации в несериализуемые поля объекта

записываются значения по умолчанию.

Не сериализуются также константы и статические поля,

поскольку они не принадлежат объекту.

13

Ссылки, источники…

1. Formatter Class. (Режим доступа:

https://docs.microsoft.com/ru-

ru/dotnet/api/system.runtime.serialization.formatter?vie

w=netcore-2.1).

2. BinaryFormatter Class (Режим доступа:

https://docs.microsoft.com/ru-

ru/dotnet/api/system.runtime.serialization.formatters.bin

ary.binaryformatter?view=netcore-2.1)

3. Сериализация. (Режим доступа:

https://professorweb.ru/my/csharp/thread_and_files/lev

el4/4_1.php).

14

https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netcore-2.1
https://professorweb.ru/my/csharp/thread_and_files/level4/4_1.php
https://professorweb.ru/my/csharp/thread_and_files/level4/4_1.php

