
Средства ввода-вывода

Текстовые потоки данных

Основы программирования

Текстовые потоки данных

Предназначены для работы с символьными данными в
кодировке Unicode.

Кодировку потока можно настроить с помощью констант
перечисления Encoding из пространства имен

System.Text.

Текстовые потоки разделены на

• потоки чтения,

• потоки записи.

Каждая из групп имеет свой абстрактный базовый класс.

2

Схема наследования текстовых потоков

3

Класс TextReader

Является базовым абстрактным классом для символьных

потоков чтения.

4

Класс TextReader. Некоторые методы

Peek()– возвращает следующий символ без

перемещения курсора в потоке.

Read()– считывание текстовых данных из потока.

ReadBlock()– считывание из потока заданное количество

символов в массив.

ReadLine()– считывание строки из потока. Пустая строка

(null) означает конец потока.

ReadToEnd()– считывание всех символов до конца

потока, начиная с текущей позиции курсора. Возвращается
тип string.

Close()– закрытие потока.

5

Класс TextWriter

Является базовым абстрактным классом для текстовых

потоков записи .

6

Класс TextWriter. Некоторые методы

Close() – закрытие потока.

Flush() – очистка буфера.

NewLine – свойство используется для хранения

последовательности символов, означающих переход на

новую строку (по умолчанию ‘\r\n’).

Write() – запись текста в поток.

WriteLine() – запись строки в поток, при этом курсор

перемещается на новую строку.

7

Классы StreamReader и StreamWriter

Наследниками описанных абстрактных классов

являются:

StreamReader – поток чтения из текстового файла,

StreamWriter – поток записи в текстовый файл.

Они реализуют функциональность своего предка для

работы с файлом, как с текстовым потоком записи

или чтения.

Имеют дополнительную функциональность,

связанную с созданием и открытием файлов.

8

Чтение из файла и класс StreamReader

Позволяет считывать весь текст или отдельные строки из

текстового файла.

9

Класс StreamReader.

Некоторые конструкторы
StreamReader(string path) – через параметр path

передается путь к считываемому файлу.

StreamReader(string path, System.Text.Encoding

encoding) – параметр encoding задает кодировку для

чтения файла.

10

Класс StreamReader. Некоторые методы

Close()– закрывает считываемый файл и освобождает все

ресурсы.

Peek()– возвращает следующий доступный символ, если

символов больше нет, то возвращает -1.

Read()– считывает и возвращает следующий символ в

численном представлении.

Перегруженная версия:
Read(char[] array, int index, int count), где

array - массив, куда считываются символы,

index - индекс в array, начиная с которого записываются считываемые символы и

count - максимальное количество считываемых символов.

ReadLine() – считывает одну строку в файле.

ReadToEnd() – считывает весь текст из файла.

11

Запись в файла и класс StreamWriter

Используется для записи в текстовый файл.

12

Класс StreamWriter.

Некоторые конструкторы
StreamWriter(string path)– через параметр path

передается путь к файлу, который будет связан с потоком

StreamWriter(string path, bool append)–

параметр append указывает, надо ли добавлять в конец

файла данные или же перезаписывать файл. Если равно
true, то новые данные добавляются в конец файла. Если

равно false, то файл перезаписываетсяя заново.

StreamWriter(string path, bool append,

System.Text.Encoding encoding)– параметр

encoding указывает на кодировку, которая будет

применяться при записи.

13

Класс StreamWriter. Некоторые методы

Close() – закрывает записываемый файл и освобождает

все ресурсы.

Flush() – записывает в файл оставшиеся в буфере

данные и очищает буфер.

Write() – записывает в файл данные простейших типов,

как int, double, char, string и т.д.

WriteLine() – также записывает данные, только после

записи добавляет в файл символ окончания строки.

14

Пример

…

FileInfo f = new FileInfo(“my.txt“);

StreamWriter sw = f.CreateText();

sw.WriteLine(“Новый файл“);
for (int i = 0; i < 10; i++) {

 sw.Write(i + “ “); }

sw.Write(sw.NewLine);

sw.Close();

StreamReader sr = f.OpenText();

string s = null;

while ((s = sr.ReadLine()) != null)

Console.WriteLine(s);

sr.Close();

…

 15

Пример. Комментарий

Методы Write и WriteLine класса StreamWriter

имеют множество перегрузок для записи в файл
значений разных типов (как и в классе Console).

Подробнее:

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0

В классе StreamWriter описано булевское свойство

AutoFlush, если установить его в true, то очищение

буфера потока будет производиться после каждой

записи в поток. То есть каждый метод записи будет

передавать данные через внутренний буфер потока

прямо в файл.

16

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0

Классы StringReader и StringWriter

Наследниками абстрактных классов TextWriter и

TextReader являются также классы StringWriter

и StringReader соответственно.

Эти классы позволяют работать с символьными

потоками в динамической памяти аналогично потоку

MemoryStream.

17

Пример

StringWriter stw = new StringWriter();

stw.WriteLine(”Поток в динамической памяти”);

for (int i = 0; i < 10; i++) {

stw.Write(i + ” ”); }

stw.Write(stw.NewLine);

stw.Close();

Console.WriteLine(stw.ToString());

StringReader str=new StringReader(”Поток в

динамической памяти”);

string s = null;

while ((s = str.ReadLine()) != null)

 Console.WriteLine(s);

str.Close();

…

18

Пример. Комментарии

Потоки в динамической памяти можно интерпретировать

как временные хранилища данных, которые после

формирования их содержимого нужно отправить в

постоянное хранилище.

В классе StringWriter определен метод получения еще

одного временного хранилища символьных данных –
объекта класса StringBuilder – метод

GetStringBuilder.

Отметим, что текстовые потоки

• не поддерживают произвольный доступ, и

• не имеют в своем составе методов управления

курсором.

19

Ссылки, источники…

1. System.IO Namespace (Режим доступа

https://docs.microsoft.com/ru-

ru/dotnet/api/system.io?view=netcore-2.1).

2. C# и .NET | Работа с файлами. File и FileInfo

(metanit.com)
https://metanit.com/sharp/tutorial/5.3.php

20

https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=netcore-2.1
https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=netcore-2.1
https://metanit.com/sharp/tutorial/5.3.php

