
Средства ввода-вывода 

Текстовые потоки данных 

Основы программирования 



Текстовые потоки данных 

Предназначены для работы с символьными данными в 
кодировке Unicode.  

Кодировку потока можно настроить с помощью констант 
перечисления Encoding из пространства имен 

System.Text. 

Текстовые потоки разделены на  

• потоки чтения, 

• потоки записи.  

Каждая из групп имеет свой абстрактный базовый класс.  
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Схема наследования текстовых потоков 
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Класс TextReader 

 

Является базовым абстрактным классом для символьных 

потоков чтения.  
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Класс TextReader. Некоторые методы 

Peek()– возвращает следующий символ без 

перемещения курсора в потоке. 

Read()– считывание текстовых данных из потока. 

ReadBlock()– считывание из потока заданное количество 

символов в массив. 

ReadLine()– считывание строки из потока. Пустая строка 

(null) означает конец потока. 

ReadToEnd()– считывание всех символов до конца 

потока, начиная с текущей позиции курсора. Возвращается 
тип string. 

Close()– закрытие потока. 
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Класс TextWriter 

 

Является базовым абстрактным классом для текстовых 

потоков записи . 
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Класс TextWriter. Некоторые методы 

Close() – закрытие потока. 

Flush() – очистка буфера. 

NewLine – свойство используется для хранения 

последовательности символов, означающих переход на 

новую строку (по умолчанию ‘\r\n’). 

Write() – запись текста в поток. 

WriteLine() – запись строки в поток, при этом курсор 

перемещается на новую строку. 
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Классы StreamReader и StreamWriter  

Наследниками описанных абстрактных классов 

являются:  

StreamReader – поток чтения из текстового файла, 

StreamWriter – поток записи в текстовый файл. 

Они реализуют функциональность своего предка для 

работы с файлом, как с текстовым потоком записи 

или чтения. 

Имеют дополнительную функциональность, 

связанную с созданием и открытием файлов. 
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Чтение из файла и класс StreamReader 

 

Позволяет считывать весь текст или отдельные строки из 

текстового файла.  
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Класс StreamReader.  

Некоторые конструкторы 
StreamReader(string path) – через параметр path 

передается путь к считываемому файлу. 

StreamReader(string path, System.Text.Encoding 

encoding) –  параметр encoding задает кодировку для 

чтения файла. 
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Класс StreamReader. Некоторые методы 

Close()– закрывает считываемый файл и освобождает все 

ресурсы. 

Peek()– возвращает следующий доступный символ, если 

символов больше нет, то возвращает -1. 

Read()– считывает и возвращает следующий символ в 

численном представлении.  

Перегруженная версия:  
Read(char[] array, int index, int count), где  

array - массив, куда считываются символы,  

index - индекс в array, начиная с которого записываются считываемые символы и  

count - максимальное количество считываемых символов. 

ReadLine() – считывает одну строку в файле. 

ReadToEnd() – считывает весь текст из файла. 
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Запись в файла и класс StreamWriter 

 

Используется для записи в текстовый файл.  
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Класс StreamWriter.  

Некоторые конструкторы 
StreamWriter(string path)– через параметр path 

передается путь к файлу, который будет связан с потоком 

StreamWriter(string path, bool append)– 

параметр append указывает, надо ли добавлять в конец 

файла данные или же перезаписывать файл. Если равно 
true, то новые данные добавляются в конец файла. Если 

равно false, то файл перезаписываетсяя заново. 

StreamWriter(string path, bool append, 

System.Text.Encoding encoding)– параметр 

encoding указывает на кодировку, которая будет 

применяться при записи. 
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Класс StreamWriter. Некоторые методы 

Close() – закрывает записываемый файл и освобождает 

все ресурсы. 

Flush() – записывает в файл оставшиеся в буфере 

данные и очищает буфер. 

Write() – записывает в файл данные простейших типов, 

как int, double, char, string и т.д. 

WriteLine() – также записывает данные, только после 

записи добавляет в файл символ окончания строки. 
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Пример 

… 

FileInfo f = new FileInfo(“my.txt“); 
 

StreamWriter sw = f.CreateText(); 

sw.WriteLine(“Новый файл“); 
for (int i = 0; i < 10; i++) { 

  sw.Write(i + “ “);   } 

sw.Write(sw.NewLine); 

sw.Close(); 

 

StreamReader sr = f.OpenText(); 

string s = null; 

while ((s = sr.ReadLine()) != null) 

Console.WriteLine(s); 

sr.Close(); 

… 
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Пример. Комментарий 

Методы Write и WriteLine класса StreamWriter 

имеют множество перегрузок для записи в файл 
значений разных типов (как и в классе Console). 

Подробнее:  

https://docs.microsoft.com/en-us/dotnet/api/system.io.streamwriter.write?view=net-6.0  

В классе StreamWriter описано булевское свойство 

AutoFlush, если установить его в true, то очищение 

буфера потока будет производиться после каждой 

записи в поток. То есть каждый метод записи будет 

передавать данные через внутренний буфер потока 

прямо в файл. 
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Классы StringReader и StringWriter  

Наследниками абстрактных классов TextWriter и 

TextReader являются также классы StringWriter 

и StringReader соответственно.  

Эти классы позволяют работать с символьными 

потоками в динамической памяти аналогично потоку 

MemoryStream.  
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Пример 

StringWriter stw = new StringWriter(); 

stw.WriteLine(”Поток в динамической памяти”); 

 

for (int i = 0; i < 10; i++) { 

stw.Write(i + ” ”);   } 

stw.Write(stw.NewLine); 

stw.Close(); 

 

Console.WriteLine(stw.ToString()); 

StringReader str=new StringReader(”Поток в 

динамической памяти”); 

string s = null; 

while ((s = str.ReadLine()) != null) 

 Console.WriteLine(s); 

str.Close(); 

… 
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Пример. Комментарии 

Потоки в динамической памяти можно интерпретировать 

как временные хранилища данных, которые после 

формирования их содержимого нужно отправить в 

постоянное хранилище. 

В классе StringWriter определен метод получения еще 

одного временного хранилища символьных данных – 
объекта класса StringBuilder – метод 

GetStringBuilder. 

Отметим, что текстовые потоки  

• не поддерживают произвольный доступ, и  

• не имеют в своем составе методов управления 

курсором. 
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Ссылки, источники… 

1. System.IO Namespace (Режим доступа 

https://docs.microsoft.com/ru-

ru/dotnet/api/system.io?view=netcore-2.1). 

2. C# и .NET | Работа с файлами. File и FileInfo 

(metanit.com) 
https://metanit.com/sharp/tutorial/5.3.php  
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