Ассемблер. Лабораторная работа № 1
Арифметические и логические команды
1) В программе необходимо реализовать функцию вычисления целочисленного выражения на встроенном ассемблере MASM в среде Microsoft Visual Studio на языке C++.
2) Значения переменных передаются в качестве параметров функции.

3) Результат выводить в консольном приложении (проект консольное приложение Win32).

4) В программе реализовать ввод переменных из командной строки и вывод результата на экран.

5) Все параметры функции 32 битные числа (знаковые и беззнаковые).

6) Первые строки функции вычисления выражения заносят значения аргументов функции в соответствующие регистры.

7) Где необходимо реализовать проверки вводимых данных и вычисления отдельных операций. Например, проверка деления на 0.

8) В качестве комментария к каждой строке необходимо указать, какой промежуточный результат, в каком регистре формируется.

9) По возможности использовать команды сдвига.

Пример вычисления выражения (25/с – b + 2)/(b + a*a -1) в среде Microsoft Visual Studio 2012 на языке C++ (консольное приложение).
// подключаем необходимые библиотеки
#include "stdafx.h"
#include <stdio.h> // стандартный ввод/вывод
#include <iostream> // потоковый ввод/вывод
// функция вычисления выражения (25/с – b + 2)/(b + a*a -1);
int calc(int a, int b, int c)

{

int result = 0;

__asm{

mov
eax, a

mov
ebx, b

mov
ecx, c

imul eax; <edx:eax> = a*a

dec
eax; <eax>=a*a-l

add
eax, ebx; <eax>=a*a-1+b

push eax; в стеке a*a-1+b

mov eax, 25; <eax>=25

; готовимся к делению

cdq
; eax ==> edx:eax

idiv ecx; <eax>=25/c

sub
eax, ebx; <eax>=25/c-b

add
eax, 2; <eax>=25/c-d+2

; готовимся к делению

pop ebx;
<ebx>= a*a-1+b

cdq; eax ==> <edx:eax>=25/c-d+2

idiv ebx; <eax>=(25/c-d+2)/(a*a-1+b)

mov result, eax; result = eax

}

return result; // возвращаем результат вычисления выражения
}

int _tmain(int argc, _TCHAR* argv[])

{

int a, b, c;

std::cout << "a = " << std::endl;// потоковый вывод

std::cin >> a;// потоковый ввод

printf("b = \n");// стандартный вывод

scanf_s("%d",&b);// стандартный ввод

std::cout << "c = " << std::endl;

std::cin >> c;

int res = calc(a, b, c);// вычисление выражения

printf("%d", res);// вывод результата вычисления выражения

system("PAUSE");

return 0;

}

Варианты
1) (7*a-40-8*b*b)/(6*c+83/d);
2) (6*a*a+27-4*b)/(-3*c+44/d*d);
3) (-2*a-11-3*b*b)/(-6*c-84/d);
4) (8*a*a+74-6*b)/(-4*c-99/d);
5) (-8*a-90-2*b*b)/(3*c-21/d);
6) (2*a-37-6*b)/(3*c*c+53/d*d);
7) (3*a*a+98-2*b*b)/(-6*c+93/d);
8) (6*a+75-b*b)/(-4*c-92/d);
9) (-8*a+60-4*b)/(-8*c*c+70/d);
10) (3*a+92-4*b)/(-3*c-14/d*d);
11) (4*a*a+59-3*b)/(10*c-5/d);
12) (10*a*a-85-3*b)/(-3*c-59/d);
13) (3*a*a+34-2*b)/(2*c+28/d);
14) (10*a*a-79-7*b)/(3*c-32/d);
15) (6*a*+54-6*b)/(2*c-95/d);
16) (7*a+31-4*b*b)/(-3*c+91/d);
17) (6*a+81-3*b*b)/(2*c-73/d);
18) (3*a+9-4*b*b)/(2*c+43/d);
19) (-8*a-58-8*b*b)/(6*c+39/d);
20) (4*a+43-2*b*b)/(-7*c-61/d);
21) (-2*a+6-3*b)/(-2*c*c-55/d);
22) (7*a+56-2*b)/(-6*c*c+54/d);
23) (-4*a-32-9*b)/(-8*c*c+22/d);
24) (2*a+64-7*b)/(-9*c*c+57/d);
25) (-10*a+44-2*b)/(8*c*c+39/d);
26) (6*a-84-5*b)/(7*c*c+43/d);
27) (-8*a+22-b)/(-4*c+40/d*d);
28) (-9*a-40-2*b)/(4*c-37/d*d);
29) (-8*a-73-9*b)/(-8*c+35/d*d);
30) (-9*a+69-8*b)/(-8*c+8/d*d);
31) (8*a+52-2*b)/(9*c-84/d*d);
32) (3*a+27-6*b)/(7*c-71/d*d);
33) (7*a+47-6*b)/(-8*c+58/d*d);
34) (-3*a*a-82-3*b)/(-3*c-28/d);
35) (-2*a*a+98-b)/(-3*c-41/d);
36) (2*a*a-44-9*b)/(3*c-12/d);
37) (-10*a*a-62-9*b)/(-3*c-17/d);
38) (-9*a*a-77-4*b)/(-4*c+17/d);
39) (3*a*a+39-2*b)/(6*c-66/d);
40) (3*a*a+8-3*b)/(-4*c-61/d);
41) (6*a*a+30-3*b)/(5*c-61/d);
42) (3*a*a-40-3*b)/(4*c-98/d);
43) (3*a+16-1*b*b)/(6*c+72/d);
44) (10*a+81-2*b*b)/(-2*c-32/d);
45) (7*a-95-6*b*b)/(6*c-78/d);
46) (10*a+86-3*b*b)/(-10*c+79/d);
47) (-2*a-74-3*b*b)/(-4*c-85/d);
48) (3*a+61-7*b*b)/(3*c+19/d);
49) (-2*a-4-b*b)/(3*c+98/d);
50) (-8*a-37-6*b*b)/(-10*c+2/d);
51) (-8*a+11-b*b)/(5*c*c+23/d);
52) (-5*a+78-8*b)/(3*c*c+68/d);
53) (9*a+62-9*b)/(5*c*c-80/d);
54) (7*a-62-5*b)/(-4*c*c-33/d);
55) (2*a-15-5*b)/(2*c*c-74/d);
56) (9*a-53-4*b)/(3*c*c-19/d);
57) (-2*a-69+8*b)/(7*c*c-37/d);
58) (2*a+27-9*b)/(5*c*c-36/d);
59) (-9*a-84-10*b)/(-10*c*c+41/d);
60) (-6*a+63-9*b)/(-4*c*c+59/d);
61) (2*a+52-6*b)/(3*c-42/d*d);
62) (4*a-56-6*b)/(-7*c-22/d*d);
63) (5*a+76-7*b)/(-9*c-88/d*d);
64) (-9*a+99-4*b)/(7*c-56/d*d);
65) (-4*a+63-3*b)/(-6*c-52/d*d);
66) (-10*a+78-9*b)/(-10*c+9/d*d);
67) (-3*a-3-3*b)/(4*c-2/d*d);
68) (-5*a+67-9*b)/(-4*c-46/d*d);
69) (-4*a+61-10*b)/(3*c-20/d*d);
70) (8*a+67-10*b)/(10*c+43/d*d);
71) (7*a-36-2*b)/(8*c-7/d*d);
72) (-6*a+5-8*b)/(-3*c+57/d*d);
73) (-5*a+77-1*b)/(-5*c+39/d*d);
74) (3*a-90-6*b)/(4*c-83/d*d);
75) (-6*a+86-9*b)/(-3*c-27/d*d);
76) (-4*a*a+95-2*b)/(-8*c+42/d);
77) (-2*a*a+77-10*b)/(-6*c+6/d);
78) (3*a*a+18-8*b)/(-4*c+66/d);
79) (10*a*a-20-10*b)/(5*c-14/d);
80) (-9*a*a+93-2*b)/(1*c+56/d);
81) (-3*a*a+18-3*b)/(-5*c+24/d);
82) (5*a+65-6*b)/(-10*c-67/d);
83) (-10*a*a+60-10*b)/(-7*c+85/d);
84) (-8*a-74-3*b*b)/(7*c+33/d);
85) (7*a+20-7*b*b)/(7*c-91/d);
86) (7*a+46-5*b*b)/(-2*c+74/d);
87) (-5*a-93-4*b*b)/(3*c-61/d);
88) (-7*a-64-8*b*b)/(4*c-59/d);
89) (-8*a+22-6*b)/(-4*c+78/d);
90) (9*a-51-3*b*b)/(-6*c+77/d);
91) (4*a-99-3*b)/(10*c*c-5/d);
92) (6*a-94-10*b)/(-10*c*c+21/d);
93) (6*a-45-5*b)/(2*c*c+81/d);
94) (2*a-73-3*b)/(-3*c*c+34/d);
95) (2*a-94-9*b)/(-6*c*c+6/d);
96) (-10*a-93-7*b)/(-8*c-25/d*d);
97) (-3*a+26-1*b)/(-8*c+35/d*d);
98) (10*a+75-5*b)/(4*c-32/d*d);
99) (9*a-17-4*b)/(3*c-23/d*d);
100) (-a+174-b)/(2*c-6/d*d);
101) (-2*a+211-b)/(-3*c+40/d*a);
102) (-3*a-39-8*b)/(2*c-74/d*b);
103) (-4*a-73-9*b)/(-c+35/d*a);
104) (-5*a+69-b)/(-9*c+8/d*b);
105) (6*a+52-2*b)/(8*c-84/d*a);
106) (7*a+27-3*b)/(7*c-71/d*b);
107) (8*a+47-4*b)/(-6*c+58/d*a);
108) (-9*a+22-5*b)/(-5*c+40/d*b);
109) (-a-40-6*b)/(4*c-37/d*a);
110) (-2*a-73-7*b)/(-3*c+35/d*a);
111) (-3*a+69-8*b)/(-2*c+8/d*b);
112) (4*a+52-9*b)/(c-84/d*a);
113) (5*a+17-b)/(9*c-71/d*b);
114) (6*a+102-2*b)/(-8*c+58/d*a);

115) (-7*a+105-3*b)/(7*c-204/d*b);

116) (-8*a+127-4*b)/(-6*c+205/d*a);
117) (-9*a-60-5*b)/(5*c-100/d*b);
118) (-a-73-6*b)/(-4*c+200/d*a);
119) (-2*a+118-7*b)/(-3*c+28/d*b);
120) (3*a+25-8*b)/(2*c-64/d*a);
121) (4*a+91-9*b)/(c-31/d*b);
122) (5*a+89-b)/(-9*c+58/d*a);
123) (-6*a+59-2*b)/(-8*c+41/d*b);
124) (-7*a-36-3*b)/(7*c-78/d*a);
125) (-8*a-42-4*b)/(-6*c+38/d*b);
126) (-9*a+80-5*b)/(-5*c+66/d*a);
127) (-a+93-6*b)/(4*c-90/d*b);
128) (2*a+45-7*b)/(3*c-49/d*a);
129) (-3*a+94-8*b)/(-2*c+63/d*b);

130) (4*a+85-9*b)/(c+53/d*a);

1
Арифметические команды
1.1
Сложение и вычитание

Команды ADD и SUB выполняют сложение и вычитание байтов или слов, содержащих двоичные данные. Вычитание выполняется в компьютере по методу сложения с двоичным дополнением: для второго операнда устанавливаются обратные значения бит и прибавляется 1, а затем происходит сложение с первым операндом. Во всем, кроме первого шага, операции сложения и вычитания идентичны.

Примеры показывают все пять возможных ситуаций:

· сложение/вычитание регистр-регистр:
add ax,bx
add ah,al
· сложение/вычитание память-регистр:
sub [000ah],ax
· сложение/вычитание регистр-память:
add ax, [000ah]

· сложение/вычитание регистр- непосредственное значение:
add ax,279

sub ch,3

· сложение/вычитание память - непосредственное значение:
sub cs:[000ah],3

Поскольку прямой операции память-память не существует, данная операция выполняется через регистр.

1.2
Переполнения

Опасайтесь переполнений в арифметических операциях. Один байт содержит знаковый бит и семь бит данных, т.е. значения от -128 до +127. Результат арифметической операции может легко превзойти емкость однобайтового регистра. Например, результат сложения в регистре AL, превышающий его емкость, автоматически не переходит в регистр AH. Предположим, что регистр AL содержит шест.60, тогда результат команды Add al,20H генерирует AL сумму – шест.80. Но операция также устанавливает флаг переполнения и знаковый флаг в состояние "отрицательно". Причина заключается в том, что шест.80 или двоичное 1000 0000 является отрицательным числом. Т.е. в результате, вместо +128, мы получим -128. Так как регистр AL слишком мал для такой операции и следует воспользоваться регистром AX. Но полное слово имеет также ограничение: один знаковый бит и 15 бит данных, что соответствует значениям от -32768 до +32767.
1.3
Беззнаковые и знаковые данные.

Для беззнаковых величин все биты являются битами данных, и вместо ограничения +32767 регистр может содержать числа до +65535. Для знаковых величин левый байт является знаковым битом. Команды ADD и SUB не делают разницы между знаковыми и беззнаковыми величинами, они просто складывают и вычитают биты. В следующем примере сложения двух двоичных чисел, первое число содержит единичный левый бит. Для беззнакового числа биты представляют положительное число 249, для знакового - отрицательное число -7:

 Беззнаковое Знаковое

11111001 249 -7

00000010 2 +2

11111011 251 -5

Двоичное представление результата сложения одинаково для беззнакового и знакового числа. Однако, биты представляют +251 для беззнакового числа и -5 для знакового. Таким образом, числовое содержимое поля может интерпретироваться по разному.

Состояние "перенос" возникает в том случае, когда имеется пеpенос в знаковый разряд. Состояние "переполнение" возникает в том случае, когда перенос в знаковый разряд не создает переноса из разрядной сетки или перенос из разрядной сетки происходит без переноса в знаковый разряд. При возникновении переноса при сложении беззнаковых чисел, результат получается неправильный:

Беззнаковое Знаковое CF OF

11111100 252 -4

00000101 5 +5

00000001 1 1 1 0

(неправильно)

При возникновении переполнения при сложении знаковых чисел, результат получается неправильный:

Беззнаковое Знаковое CF OF

01111001 121 +121

00001011 11 +11

10000100 132 -124 0 1

(неправильно)

При операциях сложения и вычитания может одновременно возникнуть и переполнение, и перенос:

Беззнаковое Знаковое CF OF

11110110 246 -10

10001001 137 -119

01111111 127 +127 1 1

(неправильно)

1.4
Умножение

Операция умножения для беззнаковых данных выполняется командой MUL, а для знаковых - IMUL. Ответственность за контроль над форматом обрабатываемых чисел и за выбор подходящей команды умножения лежит на самом программисте. Существуют две основные операции умножения:

"Байт на байт". Один из множителей находится в регистре AL, а другой в байте памяти или в однобайтовом регистре. После умножения произведение находится в регистре AX. Операция игнорирует и стиpает любые данные, которые находились в регистре AH.

"Слово на слово". Один из множителей находится в регистре AX, а другой – в слове памяти или в регистре. После умножения произведение находится в двойном слове, для которого требуется два регистра: старшая (левая) часть произведения находится в регистре DX, а младшая (правая) часть в регистре AX. Операция игнорирует и стирает любые данные, которые находились в регистре DX.

В единственном операнде команд MUL и IMUL указывается множитель. Рассмотрим следующую команду:

mul multr
Если поле MULTR определено как байт (DB), то операция предполагает умножение содержимого AL на значение байта из поля MULTR. Если поле MULTR определено как слово (DW), то операция предполагает умножение содержимого AX на значение слова из поля MULTR. Если множитель находится в регистре, то длина регистра определяет тип операции, как это показано ниже:

Mul cl ;Байт-множитель: множимое в AL, произведение в AX

Mul bx ;Слово- множитель: множимое в AX, произведение в DX:AX

1.5
Беззнаковое умножение: Команда MUL

Команда MUL умножает беззнаковые числа.

Пример:

n db 10; в ассемблере

byte n = 10; в с++
 . . .

mov al,2

mul n ;ax=2*10=20=0014h: ah=00h al=14h

mov al,26

mul n ;ax=26*10=260=0104h: ah=01h al=04h

1.6
Знаковое умножение: Команда IMUL

Команда IMUL умножает знаковые числа.

mov ax,8

mov bx,-1

imul bx ; dx:ax=-8=0fffffff8h=0014h: dx=0ffffh ax=0fff8h

Таким образом, если множимое и множитель имеет одинаковый знаковый бит, то команды MUL и IMUL генерируют одинаковый результат. Но, если сомножители имеют разные знаковые биты, то команда MUL вырабатывает положительный результат умножения, а команда IMUL - отрицательный.

Повышение эффективности умножения: При умножении на степень числа 2 (2,4,8 и т.д.) более эффективным является сдвиг влево на требуемое число битов. Сдвиг более чем на 1 требует загрузки величины сдвига в регистр CL. В следующих примерах предположим, что множимое находится в регистре AL или AX:

Умножение на 2: shl ax,1

Умножение на 8: mov ax,3

Shl ax,cl
1.7
Многословное умножение

Обычно умножение имеет два типа: "байт на байт" и "слово на слово". Как уже было показано, максимальное знаковое значение в слове ограничено величиной +32767. Умножение больших чисел требует выполнения некоторых дополнительных действий. Рассматриваемый подход предполагает умножение каждого слова отдельно и сложение полученных результатов.

Рассмотрим следующее умножение в десятичном формате:

 1365

 х12

 2730

 1365

 16380

Представим, что десятичная арифметика может умножать только двухзначные числа. Тогда можно умножить 13 и 65 на 12 раздельно, следующим образом:

 13 65

 х12 х12

 26 130

 13 65

 156 780

Следующим шагом сложим полученные произведения, но поскольку число 13 представляло сотни, то первое произведение в действительности будет 15600:

 15600

 +780

 16380

Ассемблерная программа использует аналогичную технику за исключением того, что данные имеют размерность слов (четыре цифры) в шестнадцатеричном формате.

Умножение двойного слова на слово (z=x*y).

X dd ?; в ассемблере
Y dw ?; в ассемблере
Z dw ? , ? , ?; в ассемблере
. . .

wp equ word ptr

mov ax,wp x ;

mul y

mov z,ax

mov bx,dx

mov ax,wp x+2

mul y

add ax,bx

mov z+2,ax

adc dx,0

mov z+4,dx

1.8
Деление

Операция деления для беззнаковых данных выполняется командой DIV, a для знаковых – IDIV. Ответственность за подбор подходящей команды лежит на программисте. Существуют две основные операции деления:

Деление "слова на байт". Делимое находится в регистре AX, а делитель – в байте памяти или в однобайтовом регистре. После деления остаток получается в регистре AH, а частное – в AL. Так как однобайтовое частное очень мало (максимально+255 (шест.FF) для беззнакового деления и +127 (шест.7F) для знакового), то данная операция имеет ограниченное использование.
Деление "двойного слова на слово". Делимое находится в регистровой паре DX:AX, а делитель – в слове памяти или в регистре. После деления остаток получается в регистре DX, а частное в регистре AX. Частное в одном слове допускает максимальное значение +32767 (шест.FFFF) для беззнакового деления и +16383 (шест.7FFF) для знакового.

В единственном операнде команд DIV и IDIV указывается делитель. Рассмотрим следующую команду:

div divisor

Если поле DIVISOR определено как байт (DB), то операция предполагает деление слова на байт. Если поле DIVISOR определено как слово (DW), то операция предполагает деление двойного слова на слово.

При делении, например, 13 на 3, получается результат 4 1/3. Частное есть 4, а остаток – 1. Заметим, что ручной калькулятор (или программа на языке BASIC) выдает в этом случае результат 4,333 Значение содержит целую часть (4) и дробную часть (,333). Значение 1/3 и 333 есть дробные части, в то время как 1 есть остаток от деления.
1.9
Беззнаковое деление: Команда DIV

Команда DIV делит беззнаковые числа.

Mov ax,100

Mov bh,2

Div bh ; 100 div 2=50, ah=0 al=50

1.10
Переполнения и прерывания

Используя команды DIV и особенно IDIV, очень просто вызвать переполнение. Прерывания приводят (по крайней мере в системе, используемой при тестировании этих программ) к непредсказуемым результатам. В операциях деления предполагается, что частное значительно меньше, чем делимое. Деление на ноль всегда вызывает прерывание. Но деление на 1 генерирует частное, которое равно делимому, что может также легко вызвать прерывание.

Рекомендуется использовать следующее правило: если делитель – байт, то его значение должно быть меньше, чем левый байт (AH) делителя: если делитель – слово, то его значение должно быть меньше, чем левое слово (DX) делителя.

Проиллюстрируем данное правило для делителя, равного 1:

Операция деления: Делимое Делитель Частное

Слово на байт: 0123 01 (1)23

Двойное слово на слово: 0001 4026 0001 (1)4026

В обоих случаях частное превышает возможный размер. Для того чтобы избежать подобных ситуаций, полезно вставлять перед командами DIV и IDIV соответствующую проверку.
Для команды IDIV данная логика должна учитывать тот факт, что либо делимое, либо делитель могут быть отрицательными, а так как сравниваются абсолютные значения, то необходимо использовать команду NEG для временного перевода отрицательного значения в положительное значение.
1.11
Преобразование знака

Команда NEG обеспечивает преобразование знака двоичных чисел из положительного в отрицательное и наоборот.

Практически команда NEG устанавливает противоположные значения битов и прибавляет 1. Примеры:

Neg ax

Neg bl

Neg BINAMT (байт или слово в памяти)

Преобразование знака для 35-битового (или большего) числа включает больше шагов. Предположим, что регистровая пара DX:AX содержит 32-битовое двоичное число. Так как команда NEG не может обрабатывать два регистра одновременно, то ее использование приведет к неправильному результату. В следующем примере показано использование команды NOT:

Not dx ;Инвертирование битов

Not ax ;Инвертирование битов

Add ax,1 ;Прибавление 1 к AX

Adc dx,0 ;Прибавление переноса к DX
Команда CWD обеспечивает преобразование слова в двойное слово.

Команда CDQ обеспечивает преобразование двойного слова в учетверенное слово.
Команда CWD копирует значение старшего бита регистра АХ на все биты регистра DX.

Команда CDQ копирует знаковый бит регистра ЕАХ на все биты регистра EDX.
2
Логические команды

2.1
Команды логических операций : and, not,or,xor,test

Логические операции являются важным элементом в проектировании микросхем и имеют много общего в логике программирования. Команды AND, OR, XOR и TEST – являются командами логических операций. Эти команды используются для сброса и установки бит и для арифметических операций в коде ASCII . Все эти команды обрабатывают один байт или одно слово в регистре или в памяти, и устанавливают флаги CF, OF, PF, SF, ZF.
AND: Если оба из сравниваемых битов равны 1, то результат равен 1; во всех остальных случаях результат - 0.

Mov al,00110011b

And al,11101110b ; al=0010010b

OR: Если хотя бы один из сравниваемых битов равен 1, то результат равен 1; если сравниваемые биты равны 0, то результат - 0.

mov al,00110011b

or al,11101110b ; al=11111111b

XOR: Если один из сравниваемых битов равен 0, а другой равен 1, то результат равен 1; если сравниваемые биты одинаковы (оба – 0 или оба – 1) то результат – 0.

mov al,00110011b

xor al,11101110b ; al=11011101b

TEST: действует как AND-устанавливает флаги, но не изменяет биты.

mov al,00110011b

test al,11101110b ; al=0011011b sf=0

Первый операнд в логических командах указывает на один байт или слово в регистре или в памяти и является единственным значением, которое может изменятся после выполнения команд.

2.2
Команды сдвига

При выполнении команд сдвига флаг CF всегда содержит значение последнего выдвинутого бита. Существуют следующие команды cдвига:

SHR ;Логический (беззнаковый) сдвиг вправо

SHL ;Логический (беззнаковый) сдвиг влево

SAR ;Арифметический сдвиг вправо

SAL ;Арифметический сдвиг влево

Следующий фрагмент иллюстрирует выполнение команды SHR:

Mov cl,03 ; AX:

Mov ax,10110111B ; 10110111

Shr ax,1 ; 01011011 ;Сдвиг вправо на 1

Shr ax,cl ; 00001011 ;Сдвиг вправо на 3

Первая команда SHR сдвигает содержимое регистра AX вправо на 1 бит. Выдвинутый в результате один бит попадает в флаг CF, а самый левый бит регистра AX заполняется нулем. Вторая команда сдвигает содержимое регистра AX еще на три бита. При этом флаг CF последовательно принимает значения 1, 1, 0, а в три левых бита в регистре AX заносятся нули.

Рассмотрим действие команд арифметического вправо SAR:

Mov cl,03 ; AX:

Mov ax,10110111B ; 10110111

Sar ax,1 ; 11011011 ;Сдвиг вправо на 1

Sar ax,cl ; 11111011 ;Сдвиг вправо на 3

Команда SAR имеет важное отличие от команды SHR: для заполнения левого бита используется знаковый бит. Таким образом, положительные и отрицательные величины сохраняют свой знак.

В приведенном примере знаковый бит содержит единицу. При сдвигах влево правые биты заполняются нулями. Таким образом, результат команд сдвига SHL и SAL идентичен. Сдвиг влево часто используется для удваивания чисел, а сдвиг вправо – для деления на 2. Эти операции осуществляются значительно быстрее, чем команды умножения или деления.

Деление пополам нечетных чисел (например, 5 или 7) образует меньшие значения (2 или 3, соответственно) и устанавливают флаг CF в 1. Кроме того, если необходимо выполнить сдвиг на 2 бита, то использование двух команд сдвига более эффективно, чем использование одной команды с загрузкой регистра CL значением 2.

2.3
Команды циклического сдвига

Циклический сдвиг представляет собой операцию сдвига, при которой выдвинутый бит занимает освободившийся разряд.

Существуют следующие команды циклического сдвига:

ROR ;Циклический сдвиг вправо

ROL ;Циклический сдвиг влево

RCR ;Циклический сдвиг вправо с переносом

RCL ;Циклический сдвиг влево с переносом

Следующая последовательность команд иллюстрирует операцию циклического сдвига ROR:

Mov cl,03 ; BX:

Mov bx,10110111B ; 10110111

Ror bx,1 ; 11011011 ;Сдвиг вправо на 1

Rorbx,cl ; 01111011 ;Сдвиг вправо на 3

Первая команда ROR при выполнении циклического сдвига переносит правый единичный бит регистра BX в освободившуюся левую позицию. Вторая команда ROR переносит, таким образом, три правых бита.

В командах RCR и RCL в сдвиге участвует флаг CF. Выдвигаемый из регистра бит заносится в флаг CF, а значение CF при этом поступает в освободившуюся позицию.

Рассмотрим пример, в котором используются команды циклического и простого сдвига. Предположим, что 32-битовое значение находится в регистрах DX:AX так, что левые 16 бит лежат в регистре DX, а правые – в AX. Для умножения на 2 этого значения возможны следующие две команды:

Shl ax,1 ;Умножение пары регистров

Rcl dx,1 ; DX:AX на 2

Здесь команда SHL сдвигает все биты регистра AX влево, причем самый левый бит попадает в флаг CF. Затем команда RCL сдвигает все биты регистра DX влево и в освободившийся правый бит заносит значение из флага CF.
3
Работа со стеком в ассемблере
3.1
Организация стека

Стек – это область памяти, специально выделяемая для временного хранения данных программы. Для стека в структуре программы предусмотрен отдельный сегмент. Регистры процессора для работы со стеком были рассмотрены выше.

Размер стека зависит от режима работы процессора и ограничивается значением 64 Кбайт в обычном режиме (или 4 Гбайт в защищенном режиме). В каждый момент времени доступен только один стек, начальный адрес сегмента которого содержится в регистре SS. Для перехода к другому стеку необходимо загрузить в SS его адрес. Запись и чтение данных в стеке осуществляется в соответствии с принципом LIFO (Last Input First Output - Последним Пришел Первым Ушел). По мере записи данных в стек он растет в сторону младших адресов памяти.

Концептуальная схема организации стека представлена на рисунке 1. Регистры SS, ESP/ SP и EBP/ BP используются комплексно, каждый из них имеет свое функциональное назначение. Регистр ESP/ SP всегда указывает на вершину стека, то есть содержит смещение относительно начала стека, по которому в стек был записан последний элемент. Для доступа к элементам не в вершине, а внутри стека используется регистр EBP/ BP – указатель базы кадра стека. Например, при входе в процедуру выполняется передача нужных параметров путем записи их в стек. Если процедура также использует стек, то доступ к этим параметрам становится проблематичным. Выход заключается в том, чтобы после записи параметров в регистр EBP/ BP записать адрес вершины стека ESP/ SP. Значение регистра ESP/ SP в дальнейшем будет изменяться, однако в регистре EBP/ BP хранится адрес, используя который, можно получить доступ к переданным параметрам.
Когда стек пуст, то значение регистра ESP/ SP равно адресу последнего байта сегмента (самому старшему адресу ячейки памяти в сегменте), выделенного под стек. Когда стек заполнен, то значение регистра ESP/ SP становится равным значению регистра SS, и дальнейшее добавление элементов невозможно. При помещении элементов в стек адрес вершины стека (содержимое регистра ESP/ SP) уменьшается (смещается в сторону меньших адресов), а при извлечении элементов из стека – увеличивается (смещается в сторону больших адресов).

 SHAPE * MERGEFORMAT

Рисунок 1 – Схема организации стека

3.2
Команды работы со стеком

В процессорах Intel команду BSWAP можно использовать и для обращения порядка байт в 16-битных регистрах, но в некоторых совместимых процессорах других фирм этот вариант BSWAP не реализован.

	Команда:
	PUSH источник

	Назначение:
	Поместить данные в стек

Команда помещает содержимое источника в стек. В качестве параметра «источник» может быть регистр, сегментный регистр, непосредственный операнд или переменная. Фактически эта команда копирует содержимое источника в память по адресу SS:[ESP] и уменьшает ESP на размер источника в байтах (2 или 4). Команда PUSH практически всегда используется в паре с POP (считать данные из стека). Так, например, чтобы скопировать содержимое одного сегментного регистра в другой (что нельзя выполнить одной командой MOV), можно использовать такую последовательность команд:

push cs

pop ds ; теперь DS указывает на тот же сегмент, что и CS

Другое частое применение команд PUSH/POP — временное хранение переменных, например:

push ax ; сохраняет текущее значение АХ

... ; здесь располагаются какие-нибудь команды,

 ; которые используют АХ, например CMPXCHG

pop ax ; восстанавливает старое значение АХ

Начиная с 80286, команда PUSH ESP (или SP) помещает в стек значение ESP до того, как эта же команда его уменьшит, в то время как на 8086 SP помещался в стек уже уменьшенным на два.

	Команда:
	POP приемник

	Назначение:
	Считать данные из стека

Команда помещает в приемник слово или двойное слово, находящееся в вершине стека, увеличивая ESP на 2 или 4 соответственно. POP выполняет действие, полностью обратное PUSH. Приемником может быть регистр общего назначения, сегментный регистр, кроме CS (чтобы загрузить CS из стека, надо воспользоваться командой RET), или переменная. Если в роли приемника выступает операнд, использующий ESP для косвенной адресации, команда POP вычисляет адрес операнда уже после того, как она увеличивает ESP.

	Команда:
	PUSHA или PUSHAD

	Назначение:
	Поместить в стек все регистры общего назначения

PUSHA помещает в стек регистры в следующем порядке: АХ, СХ, DX, ВХ, SP, ВР, SI и DI. PUSHAD помещает в стек ЕАХ, ЕСХ, EDX, ЕВХ, ESP, EBP, ESI и EDI. (В случае SP и ESP используется значение, которое находилось в этом регистре до начала работы команды.) В паре с командами POPA/POPAD, считывающими эти же регистры из стека в обратном порядке, это позволяет писать подпрограммы (обычно обработчики прерываний), которые не должны изменять значения регистров по окончании своей работы. В начале такой подпрограммы вызывают команду PUSHA, а в конце — РОРА.

На самом деле PUSHA и PUSHAD — одна и та же команда с кодом 60h. Ее поведение определяется тем, выполняется ли она в 16- или в 32-битном режиме. Если программист использует команду PUSHAD в 16-битном сегменте или PUSHA в 32-битном, ассемблер просто записывает перед ней префикс изменения размерности операнда (66h).

Это же будет распространяться на некоторые другие пары команд: РОРА/POPAD, POPF/POPFD, PUSHF/PUSHFD, JCXZ/JECXZ, CMPSW/CMPSD, INSW/INSD, LODSW/LODSD, MOVSW/MOVSD, OUTSW/OUTSD, SCASW/SCASD и STOSW/STOSD.

	Команда:
	POPA или POPAD

	Назначение:
	Загрузить из стека все регистры общего назначения

Младшие (меньшие) адреса оперативной памяти

Старшие (большие) адреса оперативной памяти

…

…

Дно стека

Начальное значение SP (стек пуст)

Адрес начала сегмента стека в SS

Последний элемент

Вершина стека (текущее значение SP)

Направление роста стека

Размер стека

1
2

