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Accemb0Jiep. JlabopaTopuasi padora Ne 8

B mporpamMMe HE0OX0aMMO peann3oBaTh GYHKIUIO ONpPEAeSICHUS 3HAUCHHUS

HEKOTOPOH AJIeMEHTapHON (QYyHKIUU Y , 3aBUCSIIEH OT apryMeHTa X Ha

sSI3BIKE acceMOJiepa ¢ UCIOJIb30BaHNEM KOMaH I apru(PMETHIECKOTO
corpoleccopa.
@OyHKIHS BRIYUCIISACTCS B BUAC CyMMBI psijia. BEIYHCICHHS MpeKpaIiaroTcs

ecn | Sy, —S,|<é&,rme S,,, — nocuexyrOMMA wWieH psina; S, -

NpeabI Iy i uieH paga. KpoMe toro, Ha ciydai IJI0Xod CXOAMMOCTH
CJIeyeT OrPAHUYUThH KOJUYECTBO CIAraéMbIX CBEPXY HEKOTOPBHIM Hamepen
3a7aHHBIM N, T.€. BBIXOJ UX BBIUYHUCIUTEIBLHON MPOLIETYPHI MOXKET

IIPOU30MTH HE 110 YCJIOBI/IIO‘ S — Sk‘ < ¢&,amno ycioButo k > N . 3HaueHue

(GYHKIUM U KOJIMYECTBO UTEPAINil BBIBECTU JJI1 KOHTPOJISI HA SKPaH.
3HadeHue napaMeTpoB X, e N mepenarorcs B KAUeCTBE apryMEHTOB
byHKIMH.

B nporpammMe He0OXOAMMO TaKK€ peann30BaTh (YHKIHUIO BEIYUCICHUS
3HAYEHHUSA 3JIEMEHTApPHOU (DYHKIIMU HA OCHOBE AaHAJIMTHYECKOTO BBIPAKEHUS,
TaK>Ke C UCIIOJIb30BAaHUEM KOMaH apu(pMETHUIECKOI0 COMPOIIECcCopa.
3HadyeHne PYHKIIMU BBIBECTH JJISI KOHTPOJIA Ha SKPaH.

HeoOxoaumo onpenenuts JOCTUTHYTYIO MOIPEITHOCTh, BBIYUCIINB
OTKJIOHEHHE aHAJUTUYECKOTO 3HAYEHUS OT 3HAUEHUS, BBIYUCIIEHHOTO C
MOMOILBIO psAZia. 3HAUEHUE MOTPEUTHOCTH TAK)KE BBIBECTH JIJISl KOHTPOJIS Ha
DKpaH.

B kauecTBe KOMMEHTapHs K CTPOKaM, COJEep KallluM KOMaH bl

corponeccopa HCO6XOI[I/IMO YKa3aTb COCTOSIHUC PETHUCTPOB COIIPOIIECCOPA.
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Pacnipegenum perucTpsl conporeccopa.

[Ipu UKITNYECKOM BBITIOJIHEHUN BBIYMCICHUI B BEPXYIIKE CTEKa
1eJIeCO00Pa3HO XPaHUTh 3HAYCHHUE OUEPETHOr0 WieHa psja — S, HAKOIUICHHE
CYMMBI psifia OyZieM OCYyIIECTBIATh B TITyOHHe cTeka — Sum. Jlanee Oynem XpaHUTh
3HAYEHUE apTyMEHTa — X U MOTPEIIHOCTD — EPS.

double exp2(double x, double eps, int& N)

{
Int status;
int counter=0;
double res;
_asm{
st0 stl st2 st3 st4
mov ecx, N
finit WHUIIAAIU3aIHs CoIIpoIieccopa
fld  qword ptr[eps]; eps
fld  gword ptr[x]; X eps
fldz ; sum=0 x eps
fldl ; s=1 sum=0 X eps
calc: fadd st(1), st; S sum+s X eps
inc  counter,; YBEJIMYUBAEM CUETUUK
fmul st, st(2); S*X sum+s X eps
fild counter; k S*X sum+s X eps
fdivp st(1), st; s*x/k  sum+s X eps
fcom st(3); cpaBHMBaEM MOTPEITHOCTH C TCKYIUM WICHOM pPsijia
fstsw status; coxpansiem peructp ¢uaroB compoiieccopa
mov ah, byte ptr [status+1]
sahf ; 3ammchiBaeM B peructp ¢uaros mpoieccopa
jl endcalc; nepexoa Ha KOHEII, €CJM JOCTUIIIH MOTPEITHOCTh
cmp ecx, counter; CpaBHHMBACM NOCTHIXCHHEC KOJIMYECCTBA YJICHOB
jg  calc; Iepexo/1 Ha HaYajo
endcalc: fstp res; cOpOC ¢ BepIMHBI CTEKA TEKYIIETo YIeHa S
fstp res; COXpaHeHHue pe3yJabTaTa SUm
b
N = counter;
return res;
by



Hanumem QyHKIMIO, BEIYUCTSIONTYIO aHAJTUTUYECKU Y = €* C HCIOJIb30BaHUEM

KOMaH] COIpoIieccopa.

double exp3(double x)

{
__asm{
st0 stl st2
finit;
fld x; X
fldl2e; log, e X
fmul; x*log, e
fld st; x*log, e x*log, e
frndint; [x*log, e] x*log, e
fsub st(1) , st; [x*log, e] {x*log, e}
fxch st(1) {x*log, e} [x*log,e]
f2xm1 ; 2iomel _q [x*log, e]
; TOJIBKO 114 |X| <1
fld1 ; 1 poel _q [x*log, €]
fadd ; ZAe [x*log, e]
fscale’ 2{)("Iog2 e} *2[x*log2 e] _ 2(x*logze) — ¥
b
I/ pe3ysbTar JIeXHT B BEPIIMHE CTEKa COmpoiieccopa
¥
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