Ассемблер. Лабораторная работа № 4
1) В программе необходимо реализовать функцию вычисления заданного выражения на языке ассемблера с использованием команд арифметического сопроцессора.
2) Значения переменных передаются в качестве параметров функции.

3) В программе реализовать вывод результата на экран.

4) Все параметры функции имеют тип double.

5) Проверку деления на 0 реализовать также на встроенном ассемблере.

6) В качестве комментария к каждой строке необходимо указать, какой промежуточный результат, в каком регистре формируется.

7) В качестве комментария к строкам, содержащим команды сопроцессора необходимо указать состояние регистров сопроцессора.
8) Результат можно возвращать из функции в вершине стека сопроцессора.
Пример вычисления выражения: [image: image2.png]b/a—4, eciu a>
X = 25, et a=
(@®—5)/b, eciu a<





Анализ особенностей задачи.

Возможны две ситуации деления на ноль:

•
[image: image4.png]b/a—4



, если [image: image6.png]a>bhb



. Например, [image: image8.png]


.

•
[image: image10.png](a® —5)/b



, если [image: image12.png]a<bh



. Например, [image: image14.png]


.

В то же время ситуация, когда[image: image16.png]


, является допустимой.

double func(double a, double b)

{

double res; int status; const int c4=4; const int c5=5; const int c25=25;

__asm{



st0
st1
st2
st3
st4


finit
;
инициализация сопроцессора

fld 
qword ptr[b];
b

fld 
qword ptr[a];
a
b

fcom 
st(1); сравниваем a и b

fstsw status; сохраняем регистр флагов сопроцессора 


mov 
ah, byte ptr [status+1]


sahf
; записываем в регистр флагов процессора


ja a_bigger; переход если a больше

jb b_bigger; переход если b больше


; если равны


fild c25;
25
a
b

jmp
endcalc

a_bigger: ftst; сравнение a с 0

fstsw status; сохраняем регистр флагов сопроцессора 


mov 
ah, byte ptr [status+1]


sahf
; записываем в регистр флагов процессора


je error; переход если a=0


fdivp st(1), st;
b/a

fild c4;
4
b/a

fsubp st(1), st;
b/a-4


jmp
endcalc

b_bigger: fldz;

0
a
b


fcomp st(2);
сравнение b с 0


;
a
b

fstsw status; сохраняем регистр флагов сопроцессора 


mov 
ah, byte ptr [status+1]


sahf
; записываем в регистр флагов процессора


je error; переход если b=0


fld st;
a
a
b

fmul st(1), st;
a
a*a
b


fmulp st(1), st;
a*a*a
b


fild c5;
5
a*a*a
b


fsubp st(1), st;
a*a*a-5 b

fdiv st(1), st;
(a*a*a-5)/b

jmp
endcalc
error:
fldz; формируем результат ошибки
endcalc:
fstp 
res;сохранение результата
}

return res;
}

Варианты заданий

	№
	
	№
	

	1) 
	X=sin(a)+cos(a)+tg(a)+ctg(a)+ π*(a*a-b)/(-b*b-a)
	2) 
	X=2*π -sin(a)+cos(-b)-tg(a)-ctg(π *a)- π*(2*b+a)/(2*a-b)

	3) 
	X=-3*π *sin(a)+cos(a)-tg(a)+ctg(-a)+ π/(a*b+a)/(3*a*b+b)
	4) 
	X=-4*π +sin(a)-cos(b)-tg(-a)- π*ctg(b)+ π/(4*b+a)/(4*a-b)

	5) 
	X=5*π -sin(b)+cos(a)*tg(b)+ctg(b)+ π*(a*a-b)/(-5*b*b-a)
	6) 
	X=6*π /sin(a)+cos(-a)-tg(b)-ctg(π *b)- π*(6*b+a)/(6*a-b)

	7) 
	X=-7*π /sin(b)+ π*cos(b)/tg(a)+ctg(-b)+ π/(a*b+a)/(7*a+b)
	8) 
	X=-8*π +sin(b)-cos(a)-tg(-b)-ctg(a)+ π/(8*b+a)/(8*a-b)

	9) 
	X=9*π +sin(b)+cos(a)+tg(b)+ctg(a)+ π*(b*b-a)/(-9*a*b-b)
	10) 
	X=10*π -sin(b)+cos(-b)-tg(a)-ctg(π *a)- π*(10*b+a)/(10*a-b)

	11) 
	X=-11*π /sin(b)-cos(b)- π *tg(b)+ctg(-a)+ π/(a*b+b)/(11*a*a+b)
	12) 
	X=-12*π +sin(b)-cos(b)+tg(-a)-ctg(a)+ π/(12*b+a)/(12*a-b)

	13) 
	X=13*π +sin(b)+ π *cos(b)*tg(a)-ctg(b)+ π*(a*b-b)/(-13*a-b)
	14) 
	X=14*π *sin(b)+cos(-a)-tg(b)+ctg(π *b)- π *(14*b+a)/(14*a-b)

	15) 
	X=-15*π +sin(a)+cos(b)/tg(a)-ctg(-b)+ π/(b*b+a)/(15*a+b)
	16) 
	X=-16*π /sin(a)-cos(a)-tg(-b)-ctg(a)+ π/(16*b+a)/(16*a-b)

	17) 
	X=17*π -sin(a)+cos(π *b)+tg(a)-ctg(a)+ π*(a*a-b)/(-17*a+b)
	18) 
	X=18*π -sin(a)+cos(-b)-tg(a)-ctg(π *a)- π*(18*b+a)/(18*a-b)

	19) 
	X=-19*π +sin(π *a)+cos(b)-tg(a)-ctg(-a)+ π/(a*b+a)/(19*a-b)
	20) 
	X=-20*π +sin(a)-cos(b)-tg(-a)- π*ctg(b)+ π/(20*b+a)/(20*a-b)

	21) 
	X=21*π *sin(a)+cos(b)*tg(a)-ctg(b)+ π*(b*b-a)/(-21*a+b)
	22) 
	X=22*π /sin(a)+cos(-a)-tg(b)-ctg(π *b)- π*(22*b+a)/(22*a-b)

	23) 
	X=-23*π /sin(a)-cos(b)/tg(a)-ctg(-b)+ π/(a*a+b)/(23*a-b)
	24) 
	X=-24*π +sin(b)-cos(a)-tg(-b)-ctg(a)+ π/(24*b+a)/(24*a-b)

	25) 
	X=25*π +sin(a)+cos(b)+tg(a)+ctg(a)+ π*(a*b-a)/(-25*a+b)
	26) 
	X=26*π -sin(b)+cos(-b)-tg(a)-ctg(π *a)- π*(26*b+a)/(26*a-b)

	27) 
	X=-27π -sin(a)-cos(b)-tg(a)-ctg(-a)+ π/(a*a+b)/(27*a-b)
	28) 
	X=-28*π +sin(b)-cos(b)+tg(-a)-ctg(a)+ π/(28*b+a)/(28*a-b)

	29) 
	X=29*π *sin(a)-cos(π*b)*tg(a)-ctg(b)+ π*(b*b-a)/(-29*a+b)
	30) 
	X=30*π *sin(b)+cos(-a)-tg(b)+ctg(a)- π *(20*b+a)/(30*a-b)

	31) 
	X=-31*π -sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*b+a)/(31*a-b)
	32) 
	X=-32*π /sin(a)+cos(a)-tg(-b)-ctg(π *a)+ π/(32*b+a)/(32*a-b)

	33) 
	X=33* π *sin(a)+cos(a)+tg(a)+ctg(a)+ π*(b*b-a)/(-33*a+b)
	34) 
	X=34*π -sin(a)-cos(-b)-tg(a)-ctg(a)- π*(34*b+a)/(34*a-b)

	35) 
	X=-35*π *sin(a)+cos(a)-tg(a)+ctg(-a)+ π/(a*a+b)/(35*a-b)
	36) 
	X=-36*π +sin(a)+cos(b)-tg(-a)- π*ctg(π *b)+ π/(36*b+a)/(36*a-b)

	37) 
	X=37*π -sin(b)+cos(a)*tg(b)+ctg(b)+ π*(b*b-a)/(-37*a+b)
	38) 
	X=38*π /sin(a)-cos(-a)-tg(b)-ctg(a)- π*(38*b+a)/(38*a-b)

	39) 
	X=-39*π /sin(b)+ π*cos(b)/tg(a)+ctg(-b)+ π/(a*b+a)/(39*a-b)
	40) 
	X=-40*π +sin(b)+cos(a)-tg(-b)-ctg(π *b)+ π/(40*b+a)/(40*a-b)

	41) 
	X=41*π +sin(b)+cos(a)+tg(b)+ctg(a)+ π*(a*a-b)/(-41*a+b)
	42) 
	X=42*π -sin(b)-cos(-b)-tg(a)-ctg(a)- π*(42*b+a)/(42*a-b)

	43) 
	X=-43*π /sin(b)-cos(b)-tg(b)+ctg(-a)+ π/(a*b+a)/(43*a-b)
	44) 
	X=-44*π +sin(b)+cos(b)+tg(-a)-ctg(π *a)+ π/(44*b+a)/(44*a-b)

	45) 
	X=45*π +sin(b)+ π *cos(b)*tg(a)-ctg(b)+ π*(b*b-a)/(-45*a+b)
	46) 
	X=46*π *sin(b)-cos(-a)-tg(b)+ctg(a)- π *(46*b+a)/(46*a-b)

	47) 
	X=-47*π +sin(a)+cos(b)/tg(a)-ctg(-b)+ π/(a*a+b)/(47*a-b)
	48) 
	X=-48*π /sin(a)+cos(a)-tg(-b)-ctg(π *a)+ π/(48*b+a)/(48*a-b)

	49) 
	X=49*π -sin(a)+cos(π *b)+tg(a)-ctg(a)+ π*(a*b-a)/(-49*a+b)
	50) 
	X=50*π -sin(a)-cos(-b)-tg(a)-ctg(a)- π*(50*b+a)/(50*a-b)

	51) 
	X=-51*π +sin(π *a)+cos(b)-tg(a)-ctg(-a)+ π/(a*a+b)/(51*a-b)
	52) 
	X=-52*π +sin(a)+cos(b)-tg(-a)- π*ctg(π *b)+ π/(52*b+a)/(52*a-b)

	53) 
	X=53*π *sin(a)+cos(b)*tg(a)-ctg(b)+ π*(a*b-a)/(-53*a-b)
	54) 
	X=54*π /sin(a)-cos(-a)-tg(b)-ctg(a)- π*(54*b+a)/(54*a-b)

	55) 
	X=-55*π /sin(a)-cos(b)/tg(a)-ctg(-b)+ π/(b*b+a)/(55*a-b)
	56) 
	X=-56*π +sin(b)+cos(a)-tg(-b)-ctg(π *b)+ π/(56*b+a)/(56*a-b)

	57) 
	X=57*π +sin(a)+cos(b)+tg(a)+ctg(a)+ π*(a*b-a)/(-57*a-b)
	58) 
	X=58*π -sin(b)-cos(-b)-tg(a)-ctg(a)- π*(58*b+a)/(58*a-b)

	59) 
	X=-59*π -sin(a)-cos(b)-tg(a)-ctg(-a)+ π/(a*a+b)/(59*a-b)
	60) 
	X=-60*π +sin(b)+cos(b)+tg(-a)-ctg(π *a)+ π/(60*b+a)/(60*a-b)

	61) 
	X=61*π *sin(a)-cos(π*b)*tg(a)-ctg(b)+ π*(b*b-a)/(-61*a-b)
	62) 
	X=62*π *sin(b)-cos(-a)-tg(b)+ctg(a)- π *(62*b+a)/(62*a-b)

	63) 
	X=-63*π/sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*a+b)/(63*a-b)
	64) 
	X=-64*π /sin(a)+cos(a)-tg(-b)-ctg(π *b)+ π/(64*b+a)/(64*a-b)

	65) 
	X=65*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(a*a-b)/(-65*a-b)
	66) 
	X=66*π -sin(a)-cos(-b)-tg(a)-ctg(a)- π*(66*b+a)/(66*a-b)

	67) 
	X=-67*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(a*b+b)/(67*a-b)
	68) 
	X=-68*π +sin(a)+cos(b)-tg(-a)- π*ctg(π *b)+ π/(68*b+a)/(68*a-b)

	69) 
	X=69*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(b*b-a)/(-69*a-b)
	70) 
	X=70*π /sin(a)-cos(-a)-tg(b)-ctg(a)- π*(70*b+a)/(70*a-b)

	71) 
	X=-71*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*a+b)/(71*a-b)
	72) 
	X=-72*π +sin(b)+cos(a)-tg(-b)-ctg(π *a)+ π/(72*b+a)/(72*a-b)

	73) 
	X=73*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(a*b-b)/(-73*a-b)
	74) 
	X=74*π -sin(b)-cos(-b)-tg(a)-ctg(a)- π*(74*b+a)/(74*a-b)

	75) 
	X=-75*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(b*b+a)/(75*a-b)
	76) 
	X=-76*π +sin(b)+cos(b)+tg(-a)-ctg(π *b)+ π/(76*b+a)/(76*a-b)

	77) 
	X=77*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(a*a-b)/(63*a-b)
	78) 
	X=78*π *sin(b)-cos(-a)-tg(b)+ctg(a)- π *(78*b+a)/(78*a-b)

	79) 
	X=-79*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*b+a)/(-79*a-b)
	80) 
	X=-80*π /sin(a)+cos(a)-tg(-b)-ctg(π *a)+ π/(80*b+a)/(80*a-b)

	81) 
	X=81*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(b*b-a)/(-81*a-b)
	82) 
	X=82*π -sin(a)-cos(-b)-tg(a)-ctg(a)- π*(82*b+a)/(82*a-b)

	83) 
	X=-83*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(a*b+a)/(83*a-b)
	84) 
	X=-84*π +sin(a)+cos(b)-tg(-a)- π*ctg(π *b)+ π/(84*b+a)/(84*a-b)

	85) 
	X=85*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(a*a-b)/(-85*a-b)
	86) 
	X=86*π /sin(a)-cos(-a)-tg(b)-ctg(a)- π*(86*b+a)/(86*a-b)

	87) 
	X=-87*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(b*b+a)/(87*a-b)
	88) 
	X=-88*π +sin(b)+cos(a)-tg(-b)-ctg(π *a)+ π/(88*b+a)/(88*a-b)

	89) 
	X=89*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(a*b-b)/(-89*a-b)
	90) 
	X=90*π -sin(b)-cos(-b)-tg(a)-ctg(a)- π*(90*b+a)/(90*a-b)

	91) 
	X=-91*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(a*a+b)/(91*a-b)
	92) 
	X=-92*π +sin(b)+cos(b)+tg(-a)-ctg(π *b)+ π/(92*b+a)/(92*a-b)

	93) 
	X=93*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(a*a+b)/(-93*a-b)
	94) 
	X=94*π *sin(b)-cos(-a)-tg(b)+ctg(a)- π *(94*b+a)/(94*a-b)

	95) 
	X=-95*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*a+b)/(95*a-b)
	96) 
	X=-96*π /sin(a)+cos(a)-tg(-b)-ctg(π *a)+ π/(96*b+a)/(96*a-b)

	97) 
	X=97*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(a*a+b)/(-97*a-b)
	98) 
	X=98*π -sin(a)-cos(-b)-tg(a)-ctg(a)- π*(98*b+a)/(98*a-b)

	99) 
	X=-99*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(a*a+b)/(99*a-b)
	100) 
	X=-100*π +sin(a)+cos(b)-tg(-a)- π*ctg(π *b)+ π/(100*b+a)/(100*a-b)

	101) 
	X=101*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(a*a+b)/(-101*a-b)
	102) 
	X=102*π /sin(a)-cos(-a)-tg(b)-ctg(a)- π*(102*b+a)/(102*a-b)

	103) 
	X=-103*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*a+b)/(103*a-b)
	104) 
	X=-104*π +sin(b)+cos(a)-tg(-b)-ctg(π *b)+ π/(104*b+a)/(104*a-b)

	105) 
	X=105*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(a*a+b)/(-105*a-b)
	106) 
	X=106*π -sin(b)-cos(-b)-tg(a)-ctg(a)- π*(106*b+a)/(106*a-b)

	107) 
	X=-107*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(a*a+b)/(107*a-b)
	108) 
	X=-108*π +sin(b)+cos(b)+tg(-a)-ctg(π *a)+ π/(108*b+a)/(108*a-b)

	109) 
	X=109*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(a*a+b)/(-109*a-b)
	110) 
	X=110*π *sin(b)-cos(-a)-tg(b)+ctg(a)- π *(110*b+a)/(110*a-b)

	111) 
	X=-111*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*a+b)/(111*a-b)
	112) 
	X=-112*π /sin(a)+cos(a)-tg(-b)-ctg(π *a)+ π/(112*b+a)/(112*a-b)

	113) 
	X=113*π +sin(π*a)-cos(b)+tg(a)+ctg(a)+ π*(a*a+b)/(-113*a-b)
	114) 
	X=114*π -sin(b)-cos(-b)-tg(a)-ctg(a)- π*(114*b+a)/(114*a-b)

	115) 
	X=-115*π -sin(π*a)-cos(b)-tg(a)+ctg(-a)+ π/(a*a+b)/(115*a-b)
	116) 
	X=-116*π +sin(b)+cos(b)+tg(-a)-ctg(π *a)+ π/(116*b+a)/(116*a-b)

	117) 
	X=117*π *sin(π*a)-cos(b)*tg(a)+ctg(b)+ π*(a*a+b)/(-117*a-b)
	118) 
	X=118*π *sin(b)-cos(-a)-tg(b)+ctg(π *b)- π *(118*b+a)/(118*a-b)

	119) 
	X=-119*π /sin(π*a)-cos(b)/tg(a)+ctg(-b)+ π/(a*a+b)/(119*a-b)
	120) 
	X=-120*π /sin(a)+cos(a)-tg(-b)-ctg(a)+ π/(120*b+a)/(120*a-b)


Работа с математическим сопроцессором в среде Assembler
1. Основные сведения

Сопроцессор – это специализированная интегральная схема, которая работает в содружестве с ЦП, но менее универсальна. Сопроцессор предназначен для выполнения специфического набора функций, например: выполнение операций с вещественными числами - математический сопроцессор, подготовка графических изображений и трехмерных сцен - графический сопроцессор, цифровая обработка сигналов - сигнальный сопроцессор и др.
Один из наиболее распространенных типов сопроцессоров - математический сопроцессор. Математический сопроцессор предназначен для быстрого выполнения арифметических операций с плавающей точкой, предоставления часто используемых вещественных констант (π, log210, log2e, ln2, :), вычисления тригонометрических и прочих трансцендентных функций (tg, arctg, log, ...).

Большинство современных математических сопроцессоров для представления вещественных чисел используют стандарт IEEE 754-1985 "IEEE1) Standard for Binary Floating-Point Arithmetics". Старший разряд двоичного представления вещественного числа всегда кодирует знак числа. Остальная часть разбивается на две части: экспоненту и мантиссу. Вещественное число вычисляется как: (-1)S·2E·M, где S – знаковый бит числа, E – экспонента, M – мантисса. Если 1≤M<2, то такое число называется нормализованным. При хранении нормализованных чисел сопроцессор отбрасывает целую часть мантиссы (она всегда 1), сохраняя лишь дробную часть. Экспонента кодируется со сдвигом на половину разрядной сетки, таким образом, удается избежать вопроса о кодировании знака экспоненты. Т.е. при 8-битной разрядности экспоненты код 0 соответствует числу -127, 1 - числу -126, ..., 255 числу +126 (экспонента вычисляется как код 127).
Стандарт IEEE-754 определяет три основных способа кодирования (типа) вещественных чисел.
	Таблица 2. – Типы (способы кодирования) вещественных чисел

	Тип
	Диапазон значений (по модулю)
	Двоичное представление

	вещественное ординарной точности (single precision) - 32 бит
	1,18·10-38... 3,40·1038 
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	вещественное двойной точности (double precision) - 64 бит
	2,23·10-308... 1,79·10308
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	вещественное расширенной точности (extended precision) - 80 бит
	3,37·10-4932... 1,18·104392
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Если результат численной операции не может быть точно представлен в выбранном формате, сопроцессор выполняет округление в соответствии с полем RC (таблица 3). По умолчанию RC = 00.
	Таблица 3. Режимы округления сопроцессоров Intel x87

	RC
	Режим
	Пример 1

1,000E21 < 2,23E100 < 1,001E21

-1,001E21 < -2,23E100 < -1,000E21
	Пример 2

1,000E21 < 2,05E100 < 1,001E21

-1,001E21 < -2,05E100 < -1,000E21

	00
	Округление к ближайшему (или четному)
	2,23E100 ≈ 1,001E21

-2,23E100 ≈ -1,001E21
	2,05E100 ≈ 1,000E21

-2,05E100 ≈ -1,000E21

	01
	Округление вниз (к ∞)
	2,23E100 ≈ 1,000E21

-2,23E100 ≈ -1,001E21
	2,05E100 ≈ 1,000E21

-2,05E100 ≈ -1,001E21

	10
	Округление вверх (к +∞)
	2,23E100 ≈ 1,001E21

-2,23E100 ≈ -1,000E21
	2,05E100 ≈ 1,001E21

-2,05E100 ≈ -1,000E21

	11
	Округление к нулю (усечение)
	2,23E100 ≈ 1,000E21

-2,23E100 ≈ -1,000E21
	2,05E100 ≈ 1,000E21

-2,05E100 ≈ -1,000E21


2. Команды сопроцессора

2.1. Команды пересылки данных

Команды загрузки в стек (Fpu LoaD): 

· FLD - загружает из памяти в вершину стека ST(0) вещественное число 

· FILD - загружает из памяти в вершину стека ST(0) целое число 

· FBLD - загружает из памяти в вершину стека ST(0) двоично-десятичное число

Команды сохранения и извлечения из стека (Fpu STore and Pop): 

· FSTP память - извлекает из вершины стека ST(0) в память вещественное число

· FISTP память - извлекает из вершины стека ST(0) в память целое число 

· FBSTP память - извлекает из вершины стека ST(0) в память двоично-десятичное число

Эти команды сначала сохраняют вершину стека в памяти, а потом удаляют данные из вершины стека. 

Команды копирования данных (Fpu STore): 

· FST память - извлекает из вершины стека ST(0) в память вещественное число

· FIST память - извлекает из вершины стека ST(0) в память целое число 

· FBST память - извлекает из вершины стека ST(0) в память двоично-десятичное число

Команда обмена (Fpu eXCHange): 

· FXCH - обмен содержимым верхушки стека ST(0) и численного регистра, указанного в качестве операнда команды

2.2
Арифметические команды

Сопроцессор использует шесть основных типов арифметических команд: 

· Fxxx 

Первый операнд берется из верхушки стека (источник), второй - следующий элемент стека. Результат выполнения команды записывается в стек 

· Fxxx память 

Источник берется из памяти, приемником является верхушка стека ST(0). Указатель стека ST не изменяется, команда действительна только для операндов с одинарной и двойной точностью 

· Fixxx память 

Аналогично предыдущему типу команды, но операндами могут быть 16- или 32-разрядные целые числа 

· Fxxx ST, ST(i) 

Для этого типа регистр ST(i) является источником, а ST(0) - верхушка стека - приемником. Указатель стека не изменяется 

· Fxxx ST(i), ST 

Для этого типа регистр ST(0) является источником, а ST(i) - приемником. Указатель стека не изменяется 

· FxxxP ST(i), ST 

Регистр ST(i) - приемник, регистр ST(0) - источник. После выполнения команды источник ST(0) извлекается из стека 

Строка "xxx" может принимать следующие значения: 

· ADD - Сложение 

· SUB - Вычитание 

· SUBR - Обратное вычитание, уменьшаемое и вычитаемое меняются местами 

· MUL - Умножение 

· DIV - Деление 

· DIVR - Обратное деление, делимое и делитель меняются местами 

Кроме основных арифметических команд имеются дополнительные арифметические команды: 

· FSQRT - Извлечение квадратного корня 

· FSCALE - Масштабирование на степень числа 2 

· FPREM - Вычисление частичного остатка 

· FRNDINT - Округление до целого 

· FXTRACT - Выделение порядка числа и мантиссы 

· FABS - Вычисление абсолютной величины числа 

· FCHS - Изменение знака числа 

По команде FSQRT вычисленное значение квадратного корня записывается в верхушку стека ST(0). 

Команда FSCALE изменяет порядок числа, находящегося в ST(0). По этой команде значение порядка числа ST(0) складывается с масштабным коэффициентом, который должен быть предварительно записан в ST(1). Действие этой команды можно представить следующей формулой: 

ST(0) = ST(0) * 2n, где -215 <= n <= +215 

В этой формуле n - это ST(1). 

Команда FPREM вычисляет остаток от деления делимого ST(0) на делитель ST(1). Знак результата равен знаку ST(0), а сам результат получается в вершине стека ST(0). 

Действие команды заключается в сдвигах и вычитаниях, аналогично ручному делению "в столбик". После выполнения команды флаг C2 регистра состояния может принимать следующие значения: 

· 0 - Остаток от деления, полученный в ST(0), меньше делителя ST(1), команда завершилась полностью 

· 1 - ST(0) содержит частичный остаток, программа должна еще раз выполнить команду для получения точного значения остатка 

Команда RNDINT округляет ST(0) в соответствии с содержимым поля RC управляющего регистра. 

Команда FABS вычисляет абсолютное значение ST(0). Аналогично, команда FCHS изменяет знак ST(0) на противоположный.

Трансцендентные команды

Трансцендентные команды предназначены для вычисления следующих функций: 

· тригонометрические (sin, cos, tg,...) 

· обратные тригонометрические (arcsin, arccos,...) 

· показательные (xy, 2x, 10x, ex) 

· гиперболические (sh, ch, th,...) 

· обратные гиперболические (arsh, arch, arcth,...) 

Вот список всех трансцендентных команд математического сопроцессора: 

· FPTAN Вычисление частичного тангенса 

· FPATAN Вычисление частичного арктангенса 

· FYL2X Вычисление y*log2(x) 

· FYL2XP1 Вычисление y*log2(x+1) 

· F2XM1 Вычисление 2x-1 

· FCOS Вычисление cos(x) 

· FSIN Вычисление sin(x) 

· FSINCOS Вычисление sin(x) и cos(x) одновременно 

Команда FPTAN вычисляет частичный тангенс ST(0), размещая в стеке такие два числа x и y, что y/x = tg(ST(0)). 

После выполнения команды число y располагается в ST(0), а число x включается в стек сверху (то есть записывается в ST(1)). Аргумент команды FPTAN должен находится в пределах: 

0 <= ST(0) <= pi/4 

Пользуясь полученным значением частичного тангенса, можно вычислить другие тригонометрические функции по следующим формулам: 

· sin(z) = 2*(y/x) / (1 + (y/x)2) 

· cos(z) = (1 - (y/x)2) / (1 + (y/x)2) 

· tg(z/2) = y/x; 

· ctg(z/2) = x/y; 

· cosec(z) = (1 + (y/x)2) / 2*(y/x) 

· sec(z) = (1 + (y/x)2) / (1 - (y/x)2) 

Где z – значение, находившееся в ST(0) до выполнения команды FPTAN, x и y – значения в регистрах ST(0) и ST(1), соответственно. 
Команда FPATAN вычисляет частичный арктангенс: 

z=arctg(ST(0)/ST(1))=arctg(x/y). 

Перед выполнением команды числа x и y располагаются в ST(0) и ST(1), соответственно. Аргументы команды FPATAN должен находится в пределах: 

0 < y < x 

Результат записывается в ST(0). 

Команда FYL2X вычисляет выражение y*log2(x), операнды x и y размещаются, соответственно, в ST(0) и ST(1). Операнды извлекаются из стека, а результат записывается в стек. параметр x должен быть положительным числом. 

Пользуясь результатом выполнения этой команды, можно вычислить следующим образом логарифмические функции: 

· Логарифм по основанию два: log2(x) = FYL2(x) 

· Натуральный логарифм: loge(x) = loge(2) * log2(x) = FYL2X(loge(2), x) = FYL2X(FLDLN2, x) 

· Десятичный логарифм: log10(x) = log10(2) * log2(x) = FYL2X (log10(2), x) = FYL2X(FLDLG2, x) 

Функция FYL2XP1 вычисляет выражение y*log2(x+1), где x соответствует ST(0), а y - ST(1). Результат записывается в ST(0), оба операнда выталкиваются из стека и теряются. 

На операнд x накладывается ограничение: 0 < x < 1 - 1/sqrt(2) 

Команда F2XM1 вычисляет выражение 2x-1, где x - ST(0). Результат записывается в ST(0), параметр должен находиться в следующих пределах: 0 <= x <= 0,5 

Команда FCOS вычисляет cos(x). Параметр x должен находиться в ST(0), туда же записывается результат выполнения команды. 

Команда FSIN аналогична команде FCOS, но вычисляет значение синуса ST(0). 

Команда FSINCOS вычисляет одновременно значения синуса и косинуса параметра ST(0). Значение синуса записывается в ST(1), косинуса - в ST(0).
Константы FPU
FLD1 – Поместить в стек 1,0
FLDZ – Поместить в стек +0,0
FLDPI – Поместить в стек число π
FLDL2E – Поместить в стек log2(e)
FLDL2T – Поместить в стек log2(10)
FLDLN2 – Поместить в стек ln(2)
FLDLG2 – Поместить в стек lg(2)
Все эти команды помещают в стек (то есть уменьшают ТОР на один и помещают в ST(0)) соответствующую часто используемую константу. 
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